{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "xRlGzpOI8eO0" }, "source": [ "\n", "[![AnalyticsDojo](https://github.com/rpi-techfundamentals/spring2019-materials/blob/master/fig/final-logo.png?raw=1)](http://rpi.analyticsdojo.com)\n", "

Titanic PCA

\n", "

introml.analyticsdojo.com

\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "-XovA71E3XFM" }, "source": [ "# Titanic PCA" ] }, { "cell_type": "markdown", "metadata": { "id": "7pW1UhJT8ePk" }, "source": [ "As an example of how to work with both categorical and numerical data, we will perform survival predicition for the passengers of the HMS Titanic.\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "bvj3Wids8ePm", "outputId": "3c075657-ff1a-424c-9757-3eb6ef1c2b18" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',\n", " 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],\n", " dtype='object') Index(['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch',\n", " 'Ticket', 'Fare', 'Cabin', 'Embarked'],\n", " dtype='object')\n" ] } ], "source": [ "import os\n", "import pandas as pd\n", "train = pd.read_csv('https://raw.githubusercontent.com/rpi-techfundamentals/spring2019-materials/master/input/train.csv')\n", "test = pd.read_csv('https://raw.githubusercontent.com/rpi-techfundamentals/spring2019-materials/master/input/test.csv')\n", "\n", "print(train.columns, test.columns)" ] }, { "cell_type": "markdown", "metadata": { "id": "0xqjk2-P8ePp" }, "source": [ "Here is a broad description of the keys and what they mean:\n", "\n", "```\n", "pclass Passenger Class\n", " (1 = 1st; 2 = 2nd; 3 = 3rd)\n", "survival Survival\n", " (0 = No; 1 = Yes)\n", "name Name\n", "sex Sex\n", "age Age\n", "sibsp Number of Siblings/Spouses Aboard\n", "parch Number of Parents/Children Aboard\n", "ticket Ticket Number\n", "fare Passenger Fare\n", "cabin Cabin\n", "embarked Port of Embarkation\n", " (C = Cherbourg; Q = Queenstown; S = Southampton)\n", "boat Lifeboat\n", "body Body Identification Number\n", "home.dest Home/Destination\n", "```\n", "\n", "In general, it looks like `name`, `sex`, `cabin`, `embarked`, `boat`, `body`, and `homedest` may be candidates for categorical features, while the rest appear to be numerical features. We can also look at the first couple of rows in the dataset to get a better understanding:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 548 }, "id": "bqmMR9G78ePr", "outputId": "b8b2ab48-ac65-48a9-f7ff-4575b1d63f8d" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
\n", "
" ], "text/plain": [ " PassengerId Survived Pclass \\\n", "0 1 0 3 \n", "1 2 1 1 \n", "2 3 1 3 \n", "3 4 1 1 \n", "4 5 0 3 \n", "\n", " Name Sex Age SibSp \\\n", "0 Braund, Mr. Owen Harris male 22.0 1 \n", "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", "2 Heikkinen, Miss. Laina female 26.0 0 \n", "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", "4 Allen, Mr. William Henry male 35.0 0 \n", "\n", " Parch Ticket Fare Cabin Embarked \n", "0 0 A/5 21171 7.2500 NaN S \n", "1 0 PC 17599 71.2833 C85 C \n", "2 0 STON/O2. 3101282 7.9250 NaN S \n", "3 0 113803 53.1000 C123 S \n", "4 0 373450 8.0500 NaN S " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train.head()" ] }, { "cell_type": "markdown", "metadata": { "id": "54WY6zD78ePv" }, "source": [ "### Preprocessing function\n", "\n", "We want to create a preprocessing function that can address transformation of our train and test set. " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "FKX26KU34Ti6", "outputId": "a9bd50ee-68c8-4ffb-f077-77c700aecbed" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total missing values before processing: 179\n", "Total missing values after processing: 0\n", "Total missing values before processing: 87\n", "Total missing values after processing: 0\n" ] } ], "source": [ "from sklearn.impute import SimpleImputer\n", "import numpy as np\n", "\n", "cat_features = ['Pclass', 'Sex', 'Embarked']\n", "num_features = [ 'Age', 'SibSp', 'Parch', 'Fare' ]\n", "\n", "\n", "def preprocess(df, num_features, cat_features, dv):\n", " features = cat_features + num_features\n", " if dv in df.columns:\n", " y = df[dv]\n", " else:\n", " y=None \n", " #Address missing variables\n", " print(\"Total missing values before processing:\", df[features].isna().sum().sum() )\n", " \n", " imp_mode = SimpleImputer(missing_values=np.nan, strategy='most_frequent')\n", " df[cat_features]=imp_mode.fit_transform(df[cat_features] )\n", " imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')\n", " df[num_features]=imp_mean.fit_transform(df[num_features])\n", " print(\"Total missing values after processing:\", df[features].isna().sum().sum() )\n", " \n", " X = pd.get_dummies(df[features], columns=cat_features, drop_first=True)\n", " return y,X\n", "\n", "y, X = preprocess(train, num_features, cat_features, 'Survived')\n", "test_y, test_X = preprocess(test, num_features, cat_features, 'Survived')" ] }, { "cell_type": "markdown", "metadata": { "id": "yIEMMxHGwEXG" }, "source": [ "# PCA Analysis\n", "\n", "See [Documentation](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html). \n", "\n", "You can incorporate PCA based on number of components or the variance explained. ![image.png]()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "pRaYU2YCvyNw" }, "outputs": [], "source": [ "from sklearn.decomposition import PCA\n", "pca = PCA(n_components=5)\n", "pca.fit(X)\n", "X2=pca.transform(X)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Q_NMT2q9v5e2", "outputId": "ddfa29b0-f907-4fc8-ca84-a30731610608" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2.47107661e+03 1.67651481e+02 1.25165106e+00 4.73653673e-01\n", " 3.18808533e-01]\n" ] } ], "source": [ "#This indicates the amount of variance explained by each of the principal components.\n", "print(pca.explained_variance_)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "6P5EwsE5wROv" }, "outputs": [], "source": [ "from sklearn.decomposition import PCA\n", "pca2 = PCA(n_components=0.97)\n", "pca2.fit(X)\n", "X3=pca2.transform(X)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "o7jTEHLBzIzw", "outputId": "b29c6774-34c8-4a44-f03f-21824a1d319a" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2471.07660618 167.65148116]\n" ] } ], "source": [ "print(pca2.explained_variance_)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "YUBZDEqxv8s1", "outputId": "7d115fee-2c83-4b9e-cac0-fd3e8f31e6d5" }, "outputs": [ { "data": { "text/plain": [ "array([[1.00000000e+00, 1.90521771e-16],\n", " [1.90521771e-16, 1.00000000e+00]])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cov_data = np.corrcoef(X3.T)\n", "cov_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Elbow Plot and Kaisers Rule Cutoff\n", "\n", "[Here](https://docs.displayr.com/wiki/Kaiser_Rule) is a link to documentation of Kaisers Rule. \n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data passed Bartlett’s test for sphericity.\n", "Performing PCA using rotation: quartimax factors: 4 and standardization: False\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFNCAYAAADsL325AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCD0lEQVR4nO3debxN9f7H8dfnHGSIEkrIECIi1clU16FUpKLhGlJd/dwrDbf5NtfVoLr3Nk/iNqiulEID0WyoEIpUkkhIQipjxs/vj+8+bGdyHGefdc4+7+fjsR5n77XW3vuzjuGzv9/1/X6+5u6IiIhIckmJOgAREREpeErwIiIiSUgJXkREJAkpwYuIiCQhJXgREZEkpAQvIiKShJTgRSRXZtbHzD4qwPc708yWmNk6MzuqoN5XRHalBC9SyMzseDP7xMx+N7PVZvaxmR0bcUwDzGxLLOn+FouvTT7eZ4KZ/XU3p90HXObu+7r75/mLOMtn/hGLfZWZjTKzg+OOtzSzt2LXtdrMPjWzCzO9Rz0z225mT+xtPCJFhRK8SCEys0rAGOBR4ACgJnA7sGkP36dUwUfHy+6+L1AN+AgYZWaWgM+pA3yVnxeaWWoOhy6LxX4YsD/wYOz8NsAHwESgAVAFuBjonOn1FwC/Aj3NbJ/8xCZS1CjBixSuwwDcfbi7b3P3je7+jrt/kXGCmf3NzOaa2Voz+9rMjo7tX2Rm15vZF8B6MytlZq1jre3fzGy2mbWPe5/9zOxpM/vJzH40s7tySZA7uPsW4DmgOiEh7sLM2prZ9FgPxHQzaxvbPxD4E/BYrDX9WKbX7WNm64BUYLaZLYjtPzzWCv/NzL4yszPiXjPUzAbFWuDrgQ67iX01MBI4IrbrP8Bz7v4vd1/lwUx3757ppRcAtwBbgNN39zsSKQ6U4EUK17fANjN7zsw6m1nl+INm9mdgACHhVALOAH6JO6UX0IXQSj0IGAvcRegNuBYYaWbVYuc+B2wltFyPAk4Gdtd9TqwF2wdY6u6rMh07IPaZjxCS/wPAWDOr4u43A5PZ2f1+Wfxr3X1TrJUNcKS71zez0sCbwDvAgcDfgWFm1ijupecCA4GKhJ6F3GKvCpwNfG5m5YE2wKu7ec2fgFrAS8AIwu9epNhTghcpRO6+BjgecOC/wEoze8PMDoqd8lfg3+4+Pdba/M7df4h7i0fcfYm7bwTOA95y97fcfbu7vwvMAE6NvV9n4Ep3X+/uKwjd1j1zCa+7mf0GLAGOAbplc04XYL67v+DuW919OPAN+W/1tgb2Be51983u/gHhFkavuHNed/ePY9f4Rw7v80gs9tnAT8DVQGXC/3E/7SaGvwDj3P1X4EWgs5kdmM/rESkylOBFCpm7z3X3Pu5ei9CVXAN4KHb4EGBBLi9fEve4DvDnWNf2b7EEdzxwcOxYaeCnuGODCa3knIxw9/3d/UB3P8HdZ2ZzTg3gh0z7fiCMJciPGsASd9+ey/stYfcuj8Ve0917u/tKwj317YTfR7bMrBzwZ2AYgLtPARYTeg1EijUleJEIufs3wFB23jNeAtTP7SVxj5cAL8QSW8ZWwd3vjR3bBFSNO1bJ3ZvuZcjLCF8e4tUGfswmvry+3yFmFv9/Ufz75ec9w4vcNwBTCF32OTmTcCvkCTNbbmbLCV8u1E0vxZ4SvEghMrPGZnaNmdWKPT+E0B09NXbKU8C1ZnaMBQ3MLHNCzfA/4HQzO8XMUs2srJm1N7Na7v4T4b72/WZWycxSzKy+maXv5SW8BRxmZufGBvn1AJoQutUBfgYO3YP3mwasB64zs9KxQYKnE+6HF4TrgD5m9g8zqwJgZkeaWcb7/wV4BmgGtIhtxwEtzKxZAcUgEgkleJHCtRZoBUyLjQqfCnwJXAPg7q8QBpS9GDv3NcIAuizcfQnQFbgJWElotf+Dnf+uLwDKAF8TuqtfJZfu6rxw91+A02Lx/kJIoKfFDcZ7GDjHzH41s0fy8H6bCQMJOwOrgCeAC2I9G3vN3T8BTohtC81sNTAEeMvMagInAg+5+/K4bSYwnpD8RYotc89X75eIiIgUYWrBi4iIJCEleBERkSSkBC8iIpKElOBFRESSkBK8iIhIEkrEilSRqVq1qtetWzfqMERERArFzJkzV7l7teyOJVWCr1u3LjNmzIg6DBERkUJhZplLR++gLnoREZEkpAQvIiKShJKqi15EpCTbtm0ba9asYevWrVGHIglQqlQpKlWqRGpqat7OT3A8IiJSSNasWcM+++zD/vvvj5lFHY4UIHdn48aNrFmzhsqVK+fpNeqiFxFJElu3bqVcuXJK7knIzChXrtwe9c4owYuIJJHCSO6LFi2iWrVqtG/fnvbt23PLLbcAcNFFFyX8s+P16dOHL7/8ssDeb9asWRx11FFcd911BfaeABMmTOCQQw4hPT2dE088kVWrwuKLo0eP5vjjj6ddu3Z06dKFH3/8EQg9MeXKlWPKlCm7vM+e/tmqi15ERPZYeno6r7766i77Bg8eHFE0BWPcuHHcdtttnHnmmTv2Zay4urdfnHr06MF9993H/fffz+DBgzn77LO59957ee+996hYsSKLFi1i8+bNALzxxhtceOGFvPLKK7Rp0ybfn6kWfHaGDYO6dSElJfwcNizqiERECs6mTfDll+FnAUpLSwPg888/Jy0tjTPOOIOuXbsyYcIE3J2///3vdOjQgZNOOomlS5cCcPjhh9O7d2+OOuooXnjhBTZv3sxxxx234z179erFggUL+M9//sMJJ5zAMcccw7vvvrvL506YMIFrr70WgG+++YY+ffoAMH78eP70pz/Rtm1bhg8fDsAtt9xCmzZtaNeuHVOnTt3xHl9//TWDBw/mtttu4+mnn6ZPnz5cfPHFdOzYkVWrVnHuueeSnp7OqaeeyurVq1m0aBFt2rThnHPOoUmTJowaNYqzzjqL5s2bM3fu3Bx/R0cccQRLly5lxIgR9O/fn4oVKwKhjku9evUAeP311xk4cCBffPEFe7OkuxJ8ZsOGQb9+8MMP4B5+9uunJC8ixYPZ7reyZaFZs/Azt/NyMXHixB1d9I899tgux2655RZefPFFXn/9dX799VcAxo4dS+XKlfnwww+59957uffeewFYvnw5gwYNYvLkyTzxxBOUKVOGxo0bM2fOHDZu3Mjy5cupX78+l156KR988AFvv/02d999925/Ddu3b+eOO+7g/fff56OPPuLJJ59k27ZtvP3220yePJlJkybRsmXLHec3adKEPn36cM8999C3b18gfGF5//33mTBhArVr12bixIn06NGDRx99FIBff/2Vl19+mUcffZSBAwfy6quvcuedd/LCCy/kGNfkyZNp1KgRP/30EzVq1MhyfO3atbg7lStX5rjjjuPTTz/d7bXmRF30md18M2zYsOu+DRvC/t69o4lJRKSIya6LPsOKFSs47LDDADjmmGOA0EIePXo0kyZNwt055JBDADj00EOpVKkSsLM7vEePHrz88ssceeSRnHbaaQAMGzaM559/npSUFJYvX77L58V3n2e8x6pVq5g/fz4nn3zyjucrV67krrvu4qKLLqJUqVLcfvvtVK9ePcdrPPbYYwFYsGDBjsetWrXivffeA6Bp06akpqZSs2ZNjjjiCFJSUqhZs+aOLzXxXn75ZaZPn06dOnW48cYbeeCBB3bcc4/3xhtv8O2339KpUyfWr1/Phg0baNWqVY4x5kYt+MwWL855/150lYiIFAr33Lc//oBGjaB8+fDzjz9yPjefDjroIObPn4+789lnnwHQuHFjunfvzoQJE5g4cSLPPvsskP297RNOOIEPP/yQV155he7duwNw33338eGHH2b7paJy5cosWbIEgJkzZwJQtWpVDj/8cN59910mTJjArFmzqF69Ou3atePpp58mPT2dIUOG5HodKSkhRTZo0IDp06cDMG3aNBo2bJgl9uy+ZMTr0aMHEydO5Pnnn6dChQp0796dwYMHs3btWgAWL17MokWLGDlyJB9++CHjx49n8uTJO35/+aEWfGa1a4du+czc4aij4JJL4NxzYd99Cz82EZG9tc8+MHs2zJ8PDRuG5/mQ0UUP0KJFCx566KEdx+644w569epF9erV2XfffSldujSnn346H3zwAR06dADgvPPO29EVnlmpUqVo1qwZ8+bN29HS79ChA3/6059o1arVjhZ/hmbNmvHHH3/QsWNHGjRoAITkfPPNN9OxY0dSUlKoVq0aI0aMoFu3bmzcuJFNmzbx1FNP5elau3XrxqhRo2jXrh0VKlRg2LBhrFmzZk9+XVk0atSI66+/nk6dOpGamsp+++3HY489xrJly6hSpcqO8+rXr8/06dN39CDsCdubG/hFTVpamu/1YjMZ9+Dju+lLlYJy5SD2TYtKleCCC+Dii6FJk737PBGRArJy5UqqVct2YbFCtWXLFkqXLs327ds54YQTGD58OAcffHDUYSWFzH/GZjbT3dOyO1dd9Jn17g1DhkCdOmGQSZ06MHQorFwZkv9xx8GaNfDYY9C0KXToAK+8Alu2RB25iEiRMG3aNNLT02nVqhUdO3ZUco+IWvD58cUXMGgQvPACrF8f9h18MPztb2GrVSvxMYiIZFJUWvCSOGrBJ1rz5iHBL1sWWvJNmsBPP8Edd4R582efDe+9p0F5IiISGSX4vVGpElx6aSgYMWECdO8euvVHjYKTToLGjeGhhyCbKRMiIiKJpARfEMwgPR1efjlMp7vzztBN/+23cNVVULMm/PWvsBfTHURERPaEEnxBO/hguOUW+P57GD06tOQ3boSnn4ZjjoHWreH558PcUxGRYmjRokWcc845AMybN4+0tLQdpWczu/LKK9m4cWNCYshY8KZ169Y75r9nZ8CAAYwZMyZP7zt58mTat29Pu3btOPHEE3NdzGZ38+jjF69J1EI2uVGCT5RSpaBbN3jnHZg3L7Tk998fpk2Dv/wltOr/8Q9YsCDqSEVE8mXp0qWcd955vPjii9TKYXDxQw89RLly5fb4vbdv377bc9LT05kwYQIPPPDAjtK3e+OXX37hkksu4aWXXmLSpEmMGDEi11rwu0vwGYvX/Pvf/97lcWFRgi8Mhx0GDzwAP/64syW/ejXcdx80aACdO8Obb8K2bVFHKiKSJ6tXr+acc87hySef3FGW9tprr6V9+/a0bNmSWbNmAdC+fXvWrVvHa6+9xrHHHkv79u0ZNGgQAEOHDt2xGMwHH3yw4/xrrrmGzp07M2XKFFq2bEl6ejq33XZbjrH89ttvOxJxxoI3AK1bt85y7t133016ejrt2rVjzpw5uxwbO3YsZ5111o7ytVWqVKFZs2YMHTp0R7398ePHM2DAAAYNGsS8efNo3749EydO5P3336d169a0atWKoUOH7rJ4zeOPP77LQjaFRZXsClP58vB//xe26dPhiSfgpZdg/Piw1a4N/ftD375w4IFRRysixVWswtwuuncPlTg3bIBTT816vE+fsK1aBeecEwYO5+Kzzz6jXbt2O2rNQ6hgV758eb744gv+9a9/MSxuka6RI0fy7LPPcsQRR7B9+3ZWrVrF8OHDmTRpEhs3buT000/nhBNOAODUU0/l/vvv59Zbb+W2227jtNNOy7ZFP3HiRFq1asWCBQt2fEHIzZw5c5g3bx4TJ05k+fLlXHzxxYwePXrH8ZwWgMnOxRdfzNNPP82E2O+pVatWjB07lkqVKtG6dWs+/vhj+vTpQ1paGqeddhorV67c8biwqAUflWOPhWefhaVLQ0u+fv0wQO+mm8IAvXPPhY8+0lQ7ESmSOnbsSJ06dRgwYMCOfffffz/HH388l112GcuWLdvl/FtvvZXHH3+cCy64gE8//ZSFCxfy9ddf06FDB0499dRdFpDJKMt66aWX8u6773LBBRcwfvz4LDGkp6czbdo0br31VqZNm5bleObu9blz5/LJJ5/Qvn17evbsmaXcbI0aNbJdAGZ3deYh3FKoWrUqZcqU4bDDDsty/VFQCz5qVarANdeEe/Tvvhta9WPGwPDhYWvWLHzr7t0bYusGi4jkKrfWd/nyuR+vWnW3rfcMDz30EN26deOFF17g1FNPZcyYMUydOpU5c+Zw+eWX73LuIYccwqBBg/jxxx85//zzGTFiBM2bN2fMmDGYGVviqoFmLPKy33778fDDD7N582aOOeYYTs2u5wG45JJLaNu2LRdeeCGpqak7Evf8+fN3Oa9x48akp6fvqEG/JVMF0i5dupCens4ll1xC9erVWb16NcuWLaNy5cp8/fXXALsM5otP/CkpKaxatYpKlSrx7bff5rknIJGU4IuKlBQ45ZSwLV4cyuX+978wZ06oeX/ddTvr3zdtGnW0IiKkpqYyfPhwOnbsSO3atTnooIPo0KEDbdu2zXLugAEDmDJlCuvWrePaa6+latWq9OzZk/T0dFJTU2nWrBmPPPLILq8ZPHgwo0aNYv369fTp0yfHOEqXLk3Hjh0ZOXIkl112Ge3ataNp06ZZkmzz5s1p2LAh6enppKSkcNJJJ3HTTTftOH7AAQfwxBNP0KNHDwDKlCnDww8/TMeOHbnvvvvo1KkT1apVo379+kBYMObss8/mH//4B3fffTddunQB4PLLL8/XwMKCplK1RdnmzaFozhNPwOTJO/enp4dEf+aZUKZMdPGJSJGiUrXJT6Vqk0WZMtCzJ0yaFOrfX3xxWKZ24sSwv3ZtuPVWiK2DLCIikkEJvrho1iy05JctCz+bNoWff4a77gr17888M9zDz8PcURERSX5K8MVNxYqhJT9nTmjZ9+wJqanw2mtw8smh/v2DD+6sfz9sWPgCkJISfsZNWxGR5LNly5Zci7NI8eTubNmyZZeBfbuje/DJYPnyUEBn8OCd3fVly0LLlvDpp7uWxS1fPgzg6907mlhFJGH++OMPNmzYwDYVzUpKqamplC9fnrJly+7Yl9s9+IQleDN7BjgNWOHuR2Rz/B9ARpYpBRwOVHP31Wa2CFgLbAO25hR8ZiU2wWfYuhXGjg1L2b79ds7n1akDixYVWlgiIpIYUSX4dsA64PnsEnymc08HrnL3E2LPFwFp7r5qTz6zxCf4ePPnhxK52THTvXoRkSQQySh6d58ErM7j6b2A4YmKpURq2DC01LNTpYoq5ImIJLnIB9mZWXmgEzAybrcD75jZTDPrt5vX9zOzGWY2Y+XKlYkMtfgZODDcc89s1Sro0gV++KHwYxIRkUIReYIHTgc+dvf41v5x7n400Bm4NNbdny13H+Luae6epgIPmfTuHQbU1akTuuVr14a//jUsWztuXJhq98gjWsVORCQJFYUE35NM3fPuviz2cwUwGmgZQVzJoXfvMKBu+/bQYv/vf2HuXPjzn2H9erjiCjjuOPjyy6gjFRGRAhRpgjez/YB04PW4fRXMrGLGY+BkQNmnIFWvDiNGhLnzNWrAtGlw9NFw222waVPU0YmISAFIWII3s+HAFKCRmS01s75m1t/M+seddibwjruvj9t3EPCRmc0GPgXGunvWdQJl73XtCl9/HQrnbNkCd94JLVqEZWpFRKRYU6EbCT76KNyfnzcvPL/4Yrj3XqhUKdq4REQkR1psRnbv+ONh1qyweE2pUqFYTpMm8MYbUUcmIiL5oAQvO5UtC3fcAZ99Bq1awY8/hm787t1DOVwRESk2lOAlq2bN4OOP4eGHoUIFeOUVOPxweOYZFcgRESkmlOAle6mpcPnl8NVX0Lkz/PYb9O0LHTvCd99FHZ2IiOyGErzkrk6dsIDNsGFQtSp88EFo4f/732FxGxERKZKU4GX3zODcc0OBnPPPD8vPXn99WI72s8+ijk5ERLKhBC95V7UqPP88jB8fWvaffx6S/HXXwYYNUUcnIiJxlOBlz51ySihte9VVYdDdf/4Tuu3ffz/qyEREJEYJXvJn333hgQdgypSQ3BcuDAPw/u//YHVeVwkWEZFEUYKXvdOyJcycGZam3WcfePbZMKVuxAhNqRMRiZASvOy90qXhpptg9mxo1w5WrIAePUKRnKVLo45ORKREUoKXgtOoEXz4IQweHGrYv/lmKHf7xBNhuVoRESk0SvBSsFJSoF+/sEpdt26wdi1cemlo2c+dG3V0IiIlhhK8JEbNmjB6NIwcGdaf//jjsBTtnXfC5s1RRycikvSU4CWxzjortOb/9reQ2G+7DY4+GqZOjToyEZGkpgQviVe5MgwZEsrcNmgQ6tu3bQtXXBG68EVEpMApwUvh6dABvvgCbrgh3Kt/5BE44gh4662oIxMRSTpK8FK4ypWDe+6BGTPgmGNg8WLo0iXUul+5MuroRESShhK8RKNFi3Af/r77QtIfPjwUyHnhBRXIEREpAErwEp1SpeCaa0Jd+5NOgl9+gQsugE6d4Pvvo45ORKRYU4KX6B16KLz9NgwdGgbkvfNOuDf/4IOwbVvU0YmIFEtK8FI0mMFf/hKK4fTsGZafvfpqaNMmDMwTEZE9ogQvRctBB4X78W++CbVqwfTpYTBe165Qu3YYfV+3LgwbFnWkIiJFmhK8FE2nnRYK5Fx2GWzdCm+8AUuWhAF4P/wQyuEqyYuI5EgJXoquihXh0UdDqz6zDRvg5psLPyYRkWJCCV6KvhUrst+/eHHhxiEiUowowUvRV7t29vtr1izcOEREipGEJXgze8bMVpjZlzkcb29mv5vZrNh2W9yxTmY2z8y+M7MbEhWjFBMDB0L58ln377+/ptGJiOQgkS34oUCn3Zwz2d1bxLY7AMwsFXgc6Aw0AXqZWZMExilFXe/eYbGaOnXCdLqaNWHffUOBHN2HFxHJVsISvLtPAlbn46Utge/cfaG7bwZeAroWaHBS/PTuDYsWwfbtsHRpGFWfmgr/+heMGBF1dCIiRU7U9+DbmNlsMxtnZk1j+2oCS+LOWRrbly0z62dmM8xsxkotVlJydOgQ6tgDXHghzJkTbTwiIkVMlAn+M6COux8JPAq8Fttv2Zyb4+oj7j7E3dPcPa1atWoFH6UUXVdcAeedF6bMdesGq/PTYSQikpwiS/Duvsbd18UevwWUNrOqhBb7IXGn1gKWRRCiFHVmMHgwHHUULFwYlpzVoDsRESDCBG9m1c3MYo9bxmL5BZgONDSzemZWBugJvBFVnFLElS8Po0dDlSphwZpbb406IhGRIiGR0+SGA1OARma21Mz6mll/M+sfO+Uc4Eszmw08AvT0YCtwGfA2MBcY4e5fJSpOSQJ16oSBdqmpcM898OqrUUckIhI5c8/x9naxk5aW5jNmzIg6DInKgw+GFegqVICpU8OSsyIiSczMZrp7WnbHoh5FL1JwrrwyTKdbvz4Muvv116gjEhGJjBK8JA+zUBCnRQtYsECD7kSkRFOCl+QSP+hu/Hi47bbdv0ZEJAkpwUvyqVsXXn4ZUlLg7rth5MioIxIRKXRK8JKcTjwR/vOf8Pgvf4GvNBFDREoWJXhJXlddFe7Da9CdiJRASvCSvMzgv/+FI4+E774LI+w16E5ESggleEluGYPuDjgAxo2Df/4z6ohERAqFErwkv3r1dg66GzgQRo2KOiIRkYRTgpeSoWPHsHY8hEF3X38dbTwiIgmmBC8lxzXXQM+esG5dGHT3229RRyQikjBK8FJymMFTT0Hz5jB/flhLfvv2qKMSEUkIJXgpWSpUgNdeC4Puxo6FAQOijkhEJCGU4KXkqVcPXnopDLq7884wyl5EJMkowUvJdNJJcO+94fEFF8DcudHGIyJSwJTgpeS69lro0WPnoLvff486IhGRAqMELyWXGTz9dBh09+23GnQnIklFCV5KtgoVwj34ypVhzBi4/faoIxIRKRBK8CKHHrpz0N0dd8Drr0cdkYjIXlOCFwE4+WS4557w+Pzz4Ztvoo1HRGQvKcGLZPjHP6B7d1i7Frp21aA7ESnWlOBFMpjBM89As2Zh0N3552vQnYgUW0rwIvHiB929+Wa4Jy8iUgwpwYtkVr8+DB8eWvS33w5vvBF1RCIie0wJXiQ7p5wCd98dHp93ngbdiUixowQvkpPrr4dzzgmD7rp1gzVroo5IRCTPlOBFcmIGzz4LRxwB8+Zp0J2IFCsJS/Bm9oyZrTCzL3M43tvMvohtn5jZkXHHFpnZHDObZWYzEhWjyG7tu29YXnb//cO9+LvuijoiEZE8SWQLfijQKZfj3wPp7t4cuBMYkul4B3dv4e5pCYpPJG/iB939859hdL2ISBGXsATv7pOA1bkc/8Tdf409nQrUSlQsInutUycYODA8Pu+80GUvIlKEFZV78H2BcXHPHXjHzGaaWb/cXmhm/cxshpnNWLlyZUKDlBLuhhvCoLs1azToTkSKvMgTvJl1ICT46+N2H+fuRwOdgUvNrF1Or3f3Ie6e5u5p1apVS3C0UqJlDLpr2jRMm/vLXzToTkSKrEgTvJk1B54Curr7Lxn73X1Z7OcKYDTQMpoIRTKJH3T32ms7u+1FRIqYyBK8mdUGRgHnu/u3cfsrmFnFjMfAyUC2I/FFItGgAbz44s5Bd2PGRB2RiEgWeUrwZnaQmT1tZuNiz5uYWd/dvGY4MAVoZGZLzayvmfU3s/6xU24DqgBPZJoOdxDwkZnNBj4Fxrr7+Hxcm0jidO4cpsy5Q+/eYXEaEZEixNx99yeFxP4scLO7H2lmpYDP3b1ZogPcE2lpaT5jhqbNSyFxD4PuRo2Cww+HadOgYsWooxKREsTMZuY0nTyvXfRV3X0EsB3A3bcC2wooPpHiyQyGDoUmTWDuXA26E5EiJa8Jfr2ZVSFMX8PMWgO/JywqkeKiYsUw2G6//cIys/fcE3VEIiJA3hP81cAbQH0z+xh4Hvh7wqISKU4aNoRhw0KL/tZbYezYqCMSEclbgnf3z4B0oC1wEdDU3b9IZGAixUqXLnDHHTsH3c2fH3VEIlLClcrLSWZ2QaZdR5sZ7v58AmISKZ5uugk++yx01XfrBlOnatCdiEQmr130x8ZtfwIGAGckKCaR4iklBZ57Loyo//pr6NMntOhFRCKQ1y76v8dtfwOOAsokNjSRYih+0N2oURp0JyKRyW8luw1Aw4IMRCRpHHbYzkF3t9wCb70VdUQiUgLltZLdm2b2RmwbA8wDXk9saCLFWJcucPvtoYv+3HPhu++ijkhESpg8DbID7ot7vBX4wd2XJiAekeRx881h0N1rr4VBd1OmaNCdiBSaPCV4d5+Y6EBEkk7GoLtWreCrr+DCC+GVV0LXvYhIguXaRW9ma81sTTbbWjNbU1hBihRblSqFFnylSjByJNx7b9QRiUgJkWuCd/eK7l4pm62iu1cqrCBFirVGjeB//wuPb74ZxmtxRBFJvD0aRW9mB5pZ7YwtUUGJJJ3TT9856O6ss6BmzdCFX7duGHEvIlLA8jqK/gwzmw98D0wEFgHjEhiXSPK55RY4+mjYuBGWLQvJ/ocfoF8/JXkRKXB5bcHfCbQGvnX3esCJwMcJi0okGaWkwMqVWfdv2BC67kVEClBeE/wWd/8FSDGzFHf/EGiRuLBEktTSHGaXLl5cuHGISNLL6zz438xsX2ASMMzMVhDmw4vInqhdO3TLZ1azZuHHIiJJLa8t+K6E8rRXAeOBBcDpiQpKJGkNHAjly2fdv2ULLFxY+PGISNLKa4LvB9Rw963u/py7PxLrsheRPdG7NwwZAnXqhII3NWuGVv3PP0PbtqHynYhIAchrgq8EvG1mk83sUjM7KJFBiSS13r1h0SLYvj3ck58zBzp2DEk+PR3eeSfqCEUkCeR1udjb3b0pcClQA5hoZu8lNDKRkqJSJRg7NiT+devCQjUvvBB1VCJSzO3pcrErgOXAL8CBBR+OSAlVpgw8/zxcdx1s3QoXXAD/+leYKy8ikg95LXRzsZlNAN4HqgJ/c/fmiQxMpMRJSQlJ/eGHw/35G26AK66AbduijkxEiqG8TpOrA1zp7rMSGIuIAFx+OVSvDuefD48+Cj/9FLrsy5aNOjIRKUbyulzsDWaWamY14l/j7qrOIZII3bvDgQeGdeRffRVWrAir0lWuHHVkIlJM5LWL/jLgZ+BdYGxsG5PAuESkfXuYPDlMpZs0Cf70J1iyJOqoRKSYyOsguyuBRu7e1N2bxbZc78Gb2TNmtsLMvszhuJnZI2b2nZl9YWZHxx3rZGbzYsduyPPViCSbZs1gyhRo0gS++gratIEvs/0nJSKyi7wm+CXA73v43kOBTrkc7ww0jG39gEEAZpYKPB473gToZWZN9vCzRZLHIYeElvzxx8OPP4aW/KRJUUclIkVcXhP8QmCCmd1oZldnbLm9wN0nAatzOaUr8LwHU4H9zexgoCXwnbsvdPfNwEuxc0VKrgMOgHffDWvJ//YbnHRSuDcvIpKDvI6iXxzbysS2glCT0DOQYWlsX3b7WxXQZ+6Z9u2z7uveHS65JCzxeeqpWY/36RO2VavgnHOyHr/4YujRI9xLPf/8rMevuQZOPx3mzYOLLsp6/JZbQtWzWbPgyiuzHr/77lDy9JNP4Kabsh5/6CFo0QLeew/uuivr8cGDoVEjePNNuP/+rMdfeCG0KF9+GQYNynr81VehalUYOjRsmb31VqjF/sQTMGJE1uMTJoSf990HYzIN8yhXDsaNC4/vvBPef3/X41WqwMiR4fGNN4au7Xi1asH//hceX3ll+B3GO+ywUEYWwhrt33676/EWLcLvD+C887KuDNemDdxzT3h89tnwS6ZqzieeCLfeGh537hzWhY932mlw7bXhcU5/90aMCH//hgyBP/8ZGjTYuVCN/u7p7x4k7u+e/t8rmL97l1yS9XiC5HUU/e0AZlbB3dcX0Gdbdh+Vy/7s38SsH6GLn9q1axdMZCJFVWoqPPBAaM1//z189x1s2gSHHhp1ZCJSxJjnoVKWmbUBngb2dffaZnYkcJG75/pVxMzqAmPc/Yhsjg0GJrj78NjzeUB7oC4wwN1Pie2/EcDd79ldnGlpaT5jxozdXo9IUnjuOfjrX0Plu/PPh6eeChXxRKTEMLOZ7p6W3bG83oN/CDiFUKIWd58NtNvLuN4ALoiNpm8N/O7uPwHTgYZmVs/MygA9Y+eKSLy//CV0KVaoELoQTz8d1q6NOioRKSLyXIve3TNPwM21fqaZDQemAI3MbKmZ9TWz/mbWP3bKW4TBe98B/wUuiX3OVuAy4G1gLjDC3b/Ka5wiJUqnTuHe8YEHhlXo2reH5cujjkpEioC8DrJbYmZtAY+1qi8nJN8cuXuv3Rx3wup02R17i/AFQER2Jy0tDC7q1CmsJ9+2Lbz9NjRsGHVkIhKhvLbg+xOScU3CqPYW5JCcRSQC9evDxx/DsceGwXdt28Knn0YdlYhEKK/rwa9y997ufpC7H+ju57n7L7t/pYgUmgMPhA8+CNOgVq2CDh3COvMiUiLlqYvezB7JZvfvwAx3f71gQxKRfNt3X3j99TCX+NlnoWvXMMe3b9+oIxORQpbXLvqyhG75+bGtOXAA0NfMHkpIZCKSP6VLw9NPh+Ig27aFqXR33AF5mBIrIskjr4PsGgAnxEa4Y2aDgHeAk4A5CYpNRPLLLFRcq1kTLr0U/vnPUMf+8cehVF7/2YtIcZbXFnxNoELc8wpADXffBmwq8KhEpGD07x9KqJYtG0qhnn12KDcqIkkvrwn+38AsM3vWzIYCnwP3mVkF4L1EBSciBaBbt1CDu3JleOONUNM7c61yEUk6eSpVCxC30psBn7r7skQGlh8qVSuSi7lzw1z5xYvDwhrjx0PdulFHJSJ7Id+las2scezn0cDBhFXeFgPVY/tEpLg4/PCwylnz5mHVrjZtsq5qJiJJY3ejba4B/gZks34eDpxQ4BGJSOLUqAGTJsGZZ8KHH0K7djB6dFhOVESSSp676IsDddGL5NGmTWGxmpdfDtPqnnsOeuVaXVpEiqC96aK/Lu7xnzMdu7tgwhORQrfPPvDii3DVVbBlC5x7LtyfXUediBRXuxtF3zPu8Y2ZjnUq4FhEpDClpMADD+xM7NdeC1dfDdu3RxuXiBSI3SV4y+Fxds9FpDi6+urQmi9dGh58MLTmN6m8hUhxt7sE7zk8zu65iBRXvXqFaXMVK4b78p07w++/Rx2ViOyF3SX4I81sjZmtBZrHHmc8b1YI8YlIYTnhBJg8GQ4+eOcI+2VFrtyFiORRrgne3VPdvZK7V3T3UrHHGc9LF1aQIlJIjjwSPvkkFML54oswV37u3KijEpF8yGupWhEpKerWhY8/Dsl98WI47rjwXESKFSV4EcmqSpVQv/6MM+DXX0P9+tdeizoqEdkDSvAikr3y5cNKdBddBH/8EVaiGzQo6qhEJI+U4EUkZ6VKhaR+xx1hfvwll8Att0ASVcAUSVZK8CKSOzO49VZ46ilITYWBA6Fv31ABT0SKLCV4Ecmbvn3h9ddD1/2zz0LXrrBuXdRRiUgOlOBFJO+6dAlz5KtWhXHjwtKzhxwSyt7WrQvDhkUdoYjEKMGLyJ5p2TJMm6taFb7/HpYuDffkf/gB+vVTkhcpIna3HryISFaHHQZly2bdv2FDWIZ26FA49NCw1a+/8/H++xd2pCIllhK8iOTPjz9mv3/btjCHPjsHHJA18Wf8rFUrDOITkQKR0ARvZp2Ah4FU4Cl3vzfT8X8AveNiORyo5u6rzWwRsBbYBmzNaUF7EYlI7dqhWz6zGjXgv/+FhQvDtmDBzserV4dtxoysrytdOtzHz67lf+ihYSEcEckz8wTNZzWzVOBb4CRgKTAd6OXuX+dw/unAVe5+Quz5IiDN3Vfl9TPT0tJ8Rnb/cYhIwRs2LNxz37Bh577y5WHIEOjdO+v57vDzz1mTfsbjn37K/fOqVcua+DMe16gRBvqJlDBmNjOnBnAiW/Atge/cfWEsiJeArkC2CR7oBQxPYDwiUpAykvjNN4ea9bVrhzny2SV3CPPpq1cPW9u2WY9v2BAG7WXX8l+4EFauDNu0aVlfu88+UK9e9t3/9eqFLx67M2xY3q9FpBhIZAv+HKCTu/819vx8oJW7X5bNueUJrfwG7r46tu974FfCuvOD3X3I7j5TLXiRJLV9e2jhZ9fyX7gQVqzI/fXVq2ff8j/00HDsxRf3rDdCpIiIqgVv2ezL6dvE6cDHGck95jh3X2ZmBwLvmtk37j4py4eY9QP6AdSuXXtvYxaRoiglBWrWDFu7dlmPr127s/Wf+UvAokWwfHnYslsVr1w52Lo1a2W+DRtCi14JXoqpRCb4pcAhcc9rActyOLcnmbrn3X1Z7OcKMxtN6PLPkuBjLfshEFrwex+2iBQ7FSuGojvNm2c9tm1bmKufXct/wYIw6C8nixcnLmaRBEtkgp8ONDSzesCPhCR+buaTzGw/IB04L25fBSDF3dfGHp8M3JHAWEUkWaWmQp06YevQIevx336DJk2yH+RXvnzoGahXL+FhihS0hA07dfetwGXA28BcYIS7f2Vm/c2sf9ypZwLvuPv6uH0HAR+Z2WzgU2Csu49PVKwiUoLtvz/85z/ZD8Rbvz4U9enfH5YsKfTQRPZGwgbZRUGD7EQk3zKPor/iCpg1C/73vzDIr0yZkOhvvDEMzBMpAnIbZKcELyKSm2++gQED4OWXw/Ny5eCyy+C660I9fpEI5ZbgVRlCRCQ3jRvDSy/B7NnQrRts3Bi69OvVg1tvDffwRYogJXgRkbxo3hxGj4bp06FzZ1i3Du66K5TXveuuMFVPpAhRghcR2RNpafDWW2FO/QknwO+/h5Z8vXqhZR9fLEckQkrwIiL50bYtvP8+fPABHHcc/PJLuC9/6KHwyCPwxx9RRyglnBK8iMje6NABJk+GceNC6/7nn8MI/IYNYfBg2Lw56gilhFKCFxHZW2bQqRN8+im8/nq4X790aZhW16gRDB0ayuGKFCIleBGRgmIGZ5wBn38eptU1bhxq4V94ITRtCsOHhzn1IoVACV5EpKClpED37vDll/DCC2H1um+/hXPPDa37UaMgiWqQSNGkBC8ikiipqXDeeTB3Ljz1VKiQ99VXcPbZcMwxMHasEr0kjBK8iEiilS4NffuGVvzjj8PBB4du/NNOgzZt4N13leilwCnBi4gUln32gUsuCcvUPvAAVKsG06bBySdD+/YwKcuK2CL5pgQvIlLYypWDq64Ka9Lfcw9UrhySe3p6SPbTpkUdoSQBJXgRkajsuy/ccENYc37AAKhUKXTXt24Np58euvFF8kkJXkQkavvtB//8Z0j0N94Y1qYfMwaOPhrOOScMzBPZQ0rwIiJFxQEHwN13h0R/9dVQtiyMHAnNmkHv3mGQnkgeKcGLiBQ1Bx4I998fBuNdeimUKgUvvghNmsD//V8oniOyG0rwIiJFVY0a8NhjMH8+/PWvYd+zz8Jhh8HFF4dyuCI5UIIXESnq6tSB//4XvvkGzj8ftm2DJ5+EBg3gyith+fKoI5QiSAleRKS4aNAAnn8+lMDt3h02bYKHHw5L1F5/fViyViRGCV5EpLg5/PCwmM2sWdC1K2zcCP/+N9SrB2eeCYccEurh160Lw4ZFHa1ERAleRKS4OvJIeO21sExtp06wdm14vnRpKH37ww/Qr5+SfAmlBC8iUtwdeyyMGwcHHZT12IYNcM01qnVfAinBi4gkixUrst//889hit3DD8OvvxZuTBIZJXgRkWRRu3b2+1NSwgj8K68MU+/69IGpU9WqT3JK8CIiyWLgwFDmNl758mHu/MiRYSGbP/6A554Ly9QedVSYbrd2bTTxSkIpwYuIJIvevWHIkDBv3iz8HDIELrgAzjoL3n47FM257jqoWhVmzw4Fc2rUgP79w6h8SRrmCeyiMbNOwMNAKvCUu9+b6Xh74HXg+9iuUe5+R15em520tDSfMWNGgcUvIpK0Nm2CUaNCCz5+HfpWrUKy7949a2+AFDlmNtPd07I7lrAWvJmlAo8DnYEmQC8za5LNqZPdvUVsu2MPXysiIvmxzz7QqxdMnBhWq7v88rCq3bRpcOGFULMmXHEFfP111JFKPiWyi74l8J27L3T3zcBLQNdCeK2IiOyJjBH2y5bBM8+EVvxvv8Ejj0DTppCeDsOHh1a/FBuJTPA1gSVxz5fG9mXWxsxmm9k4M2u6h68VEZGCUr58aL1PnQqffQYXXQQVKoQu/HPPhVq1QkncBQuijlTyIJEJ3rLZl/mG/2dAHXc/EngUeG0PXhtONOtnZjPMbMbKlSvzG6uIiMTLGGG/bBkMGhSq5q1aFUriNmgAp5wCo0fDli1RRyo5SGSCXwocEve8FrAs/gR3X+Pu62KP3wJKm1nVvLw27j2GuHuau6dVq1atIOMXEZFKlcKgu88/hylTwhz6smXhnXfCyPy6deG222DJkt29kxSyRCb46UBDM6tnZmWAnsAb8SeYWXUzs9jjlrF4fsnLa0VEpBCZQevWYU79smXw0EPQuHF4fOedIdGfcQa89VZYzlYil7AE7+5bgcuAt4G5wAh3/8rM+ptZ/9hp5wBfmtls4BGgpwfZvjZRsYqIyB6oXHnnCPsJE6BnT0hNhTffhC5doH59uPturVMfsYTOgy9smgcvIhKRFStC637wYPg+VtqkVKmwfG3//tChQ+gFkAIVyTx4EREpQQ48MIyw/+47GD8+JHZ3eOUVOPHE0J1///3wyy9RR1piKMGLiEjBSUkJI+xHjQrr0d9+e5he9+23cO21oYDO+efDxx9rsZsEU4IXEZHEqFkzjLD//nt4/XXo3Bk2b4b//Q+OPx6aN4fHH4fff4860qSkBC8iIolVqtTOEfYLFsCNN4Yu/S+/hMsuC4vd/O1vMHNm1JEmFSV4EREpPPXqhRH2S5bAyy/DCSfAhg3w1FOQlgbHHhser18Pw4aF6XcpKeHnsGFRR1+saBS9iIhEa968sKzts8/Cr7+GfWXLwtatYctQvnw4r3fvaOIsgjSKXkREiq5GjcII+x9/hOefh7Zt4Y8/dk3uEFr6N98cTYzFkBK8iIgUDeXK7Rxhn9Oc+cWLCzemYkwJXkREip7atbPfn5oa6uDLbinBi4hI0TNwYLjnHs8sdNufckooj/vTT9HEVkwowYuISNHTu3cYUFenTkjsderA0KFhudry5cMI/MaNwzx6LW6TLY2iFxGR4uWHH+Dvfw+L20CYXjd4MBx9dLRxRUCj6EVEJHnUqRMq440eHcrgzpgR5s9fcQWsWRN1dEWGEryIiBQ/ZtCtG8ydC9dcE54/8ggcfji8+qrq3KMELyIixdm++8J994Uyt61bw7Jl8Oc/h3XpFy6MOrpIKcGLiEjxd+SRYf78k0/C/vvDuHHQtCncc09Y4KYEUoIXEZHkkJICF10E33wTRuH/8QfcdBO0aAGTJkUdXaFTghcRkeRy0EFhSdr33oOGDcN9+vR0uPBCWLUq6ugKjRK8iIgkpxNPhC++gNtvh332CfPoGzWCZ56B7dujji7hlOBFRCR5lS0Lt90Gc+ZAx46wejX07Rta9F9+GXV0CaUELyIiya9hw1DD/sUXQxf+Rx/BUUfBDTeEteeTkBK8iIiUDGbQq1cYhHfJJaHE7b/+FUbbjx0bdXQFTgleRERKlv33DzXsp0wJI+x/+AFOOw3OPhuWLo06ugKjBC8iIiVTq1YwfTo8+GAomDNqVKiE9+CDYdW6Yk4JXkRESq5SpeDKK8NUurPPhnXr4OqrQ237adOijm6vKMGLiIjUqhVq2I8ZA3XrwqxZ0KZNuFf/228RB5c/SvAiIiIZunSBr74Ko+tTU2HQoLDu/IsvFrsFbBKa4M2sk5nNM7PvzOyGbI73NrMvYtsnZnZk3LFFZjbHzGaZmRZ5FxGRwlG+fKhhP2sWHH88/PxzKH178skwf37U0eVZwhK8maUCjwOdgSZALzNrkum074F0d28O3AkMyXS8g7u3yGkxexERkYRp2hQmToSnn4YDDgilb5s1C5XxNm2KOrrdSmQLviXwnbsvdPfNwEtA1/gT3P0Td/819nQqUCuB8YiIiOyZlBT4v/+DefNCLftNm2DAAGjeHN5/P+rocpXIBF8TWBL3fGlsX076AuPinjvwjpnNNLN+CYhPREQkb6pWDTXsJ04MU+m+/TaUvu3dO3ThF0GJTPCWzb5sRyiYWQdCgr8+bvdx7n40oYv/UjNrl8Nr+5nZDDObsXLlyr2NWUREJGft2oV783ffHercv/hiWMDmySeL3AI2iUzwS4FD4p7XApZlPsnMmgNPAV3d/ZeM/e6+LPZzBTCa0OWfhbsPcfc0d0+rVq1aAYYvIiKSjTJl4MYbw2j7zp3h99/h4ouhbVuYPTvq6HZIZIKfDjQ0s3pmVgboCbwRf4KZ1QZGAee7+7dx+yuYWcWMx8DJQHIv+yMiIsXLoYeGGvavvgo1aoTCOMccA9dcEwrmRCxhCd7dtwKXAW8Dc4ER7v6VmfU3s/6x024DqgBPZJoOdxDwkZnNBj4Fxrr7+ETFKiIiki9moQLe3LlwxRVhrvwDD4T79KNHRzp33ryYTdzPTVpams+YoSnzIiISkc8+g4sugoxcdNpp8NhjYXnam2+GxYuhdm0YODAM0NtLZjYzp6nkSvAiIiIFadu2MOjupptgzRooXTrs37Jl5znly8OQIXud5HNL8CpVKyIiUpBSU+HSS8O68z17hsQen9wBNmwILfoEUoIXERFJhIMPhuHDw3367CxenNCPV4IXERFJpNq192x/AVGCFxERSaSBA8M993jly4f9CaQELyIikki9e4cBdXXqhO76OnUKZIDd7pRK6LuLiIhISOYJTuiZqQUvIiKShJTgRUREkpASvIiISBJSghcREUlCSvAiIiJJSAleREQkCSnBi4iIJCEleBERkSSUVMvFmtlK4IcCfMuqwKoCfL8oJcu1JMt1gK6lqEqWa0mW6wBdS27quHu17A4kVYIvaGY2I6d1doubZLmWZLkO0LUUVclyLclyHaBryS910YuIiCQhJXgREZEkpASfuyFRB1CAkuVakuU6QNdSVCXLtSTLdYCuJV90D15ERCQJqQUvIiKShJTgs2Fmz5jZCjP7MupY9oaZHWJmH5rZXDP7ysyuiDqm/DKzsmb2qZnNjl3L7VHHtDfMLNXMPjezMVHHsjfMbJGZzTGzWWY2I+p49oaZ7W9mr5rZN7F/M22ijik/zKxR7M8jY1tjZldGHVd+mNlVsX/vX5rZcDMrG3VM+WVmV8Su46vC+vNQF302zKwdsA543t2PiDqe/DKzg4GD3f0zM6sIzAS6ufvXEYe2x8zMgAruvs7MSgMfAVe4+9SIQ8sXM7saSAMquftpUceTX2a2CEhz92I/R9nMngMmu/tTZlYGKO/uv0Uc1l4xs1TgR6CVuxdkjZCEM7OahH/nTdx9o5mNAN5y96HRRrbnzOwI4CWgJbAZGA9c7O7zE/m5asFnw90nAaujjmNvuftP7v5Z7PFaYC5QM9qo8seDdbGnpWNbsfx2ama1gC7AU1HHIoGZVQLaAU8DuPvm4p7cY04EFhS35B6nFFDOzEoB5YFlEceTX4cDU919g7tvBSYCZyb6Q5XgSwgzqwscBUyLOJR8i3VrzwJWAO+6e3G9loeA64DtEcdREBx4x8xmmlm/qIPZC4cCK4FnY7dOnjKzClEHVQB6AsOjDiI/3P1H4D5gMfAT8Lu7vxNtVPn2JdDOzKqYWXngVOCQRH+oEnwJYGb7AiOBK919TdTx5Je7b3P3FkAtoGWs26tYMbPTgBXuPjPqWArIce5+NNAZuDR2e6s4KgUcDQxy96OA9cAN0Ya0d2K3Gc4AXok6lvwws8pAV6AeUAOoYGbnRRtV/rj7XOBfwLuE7vnZwNZEf64SfJKL3a8eCQxz91FRx1MQYl2nE4BO0UaSL8cBZ8TuXb8EnGBm/4s2pPxz92WxnyuA0YR7jMXRUmBpXK/Qq4SEX5x1Bj5z95+jDiSfOgLfu/tKd98CjALaRhxTvrn70+5+tLu3I9wCTuj9d1CCT2qxgWlPA3Pd/YGo49kbZlbNzPaPPS5H+Mf/TaRB5YO73+jutdy9LqH79AN3L5atEjOrEBu8Saw7+2RCV2Sx4+7LgSVm1ii260Sg2A1GzaQXxbR7PmYx0NrMysf+LzuRMI6oWDKzA2M/awNnUQh/NqUS/QHFkZkNB9oDVc1sKfBPd3862qjy5TjgfGBO7N41wE3u/lZ0IeXbwcBzsVHBKcAIdy/WU8ySwEHA6PB/L6WAF919fLQh7ZW/A8NiXdsLgQsjjiffYvd5TwIuijqW/HL3aWb2KvAZoTv7c4p3RbuRZlYF2AJc6u6/JvoDNU1OREQkCamLXkREJAkpwYuIiCQhJXgREZEkpAQvIiKShJTgRUREkpASvEhEzGxbbLWvL83sldjUpuzO+ySf759mZo/sRXzrcthf3cxeMrMFZva1mb1lZofl93OKAjNrb2bFtoiKSHaU4EWis9HdW8RWLNwM9I8/GJvzj7vnK/G4+wx3v3zvw9wlJiNUrJvg7vXdvQlwE2FOfHHWnmJcJU0kO0rwIkXDZKBBrCX5oZm9CMyBnS3p2LEJcWuWD4slXMzsWDP7xMxmm9mnZlYxdv6Y2PEBZvaCmX1gZvPN7G+x/fua2ftm9pmFdd277ibODsAWd38yY4e7z3L3yRb8J9YjMcfMesTFPdHMRpjZt2Z2r5n1jsU5x8zqx84bamZPmtnk2HmnxfaXNbNnY+d+bmYdYvv7mNkoMxsfu6Z/Z8RkZieb2ZTYdb0SW48hY/362+Out7GFhZj6A1fFelT+tJd/liJFgirZiUTMwlKYnQmLUECo536Eu3+fzelHAU0Jy2Z+DBxnZp8CLwM93H26haVPN2bz2uZAa6AC8LmZjSWszHemu68xs6rAVDN7w3OugHUEkNNCOWcBLYAjgarAdDObFDt2JGHJzNWEKnFPuXtLM7uCUEHuyth5dYF0oD7woZk1AC4FcPdmZtaYsHpdxi2BFrHfySZgnpk9Grv2W4CO7r7ezK4HrgbuiL1mlbsfbWaXANe6+1/N7Elgnbvfl8O1iRQ7SvAi0SkXV0J4MmHdgLbApzkkd2LHlgLEXlsX+B34yd2nA2SsGBhr3Md73d03AhvN7EPCF4mxwN0WVoHbDtQkdLcvz8f1HA8Md/dtwM9mNhE4FlgDTHf3n2JxLQAylv2cQ+gVyDDC3bcD881sIdA49r6Pxq7tGzP7AchI8O+7+++x9/0aqAPsDzQBPo79DsoAU+I+I2PRpZmELyUiSUkJXiQ6G2PL3+4QS0jrc3nNprjH2wj/ho2wLvvuZD7Hgd5ANeAYd99iYZW7srm8x1fAOTkcy/KNIk583Nvjnm9n1/+Hsosxr+8b//t419177eY1GeeLJCXdgxcp/r4BapjZsQCx++/ZJa6usfvZVQiDyqYD+xHWp98Su7ddZzef9QGwT8Y9/NjnHWtm6cAkoIeZpZpZNaAd8OkeXsufzSwldl/+UGBe7H17xz7rMKB2bH9OphJuXTSIvaZ8Hkb5rwUq7mGsIkWaErxIMefum4EewKNmNht4l+xb4Z8SuuSnAnfG1nIfBqSZ2QxCEs11Cd7YvfkzgZMsTJP7ChhAGBMwGvgCmE34InBdbBnWPTEPmAiMA/q7+x/AE0Cqmc0hjDXo4+6bcnoDd18J9AGGm9kXsettvJvPfRM4U4PsJJloNTmREsDMBlDEB5GZ2VBgjLu/GnUsIslALXgREZEkpBa8iIhIElILXkREJAkpwYuIiCQhJXgREZEkpAQvIiKShJTgRUREkpASvIiISBL6f3Ncp/u2BmsWAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from factor_analyzer import FactorAnalyzer\n", "from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity\n", "from sklearn.decomposition import PCA\n", "import matplotlib.pyplot as plt\n", "import matplotlib\n", "def scree_plot(eigvals):\n", " fig = plt.figure(figsize=(8,5))\n", " sing_vals = np.arange(len(eigvals)) + 1\n", " plt.plot(sing_vals, eigvals, 'ro-', linewidth=2)\n", " #####horizontal line\n", " horiz_line_data = np.array([1 for i in range(len(sing_vals))])\n", " plt.plot(sing_vals, horiz_line_data, 'r--')\n", " plt.title('Scree Plot for PCA')\n", " plt.xlabel('Principal Component')\n", " plt.ylabel('Eigenvalue')\n", " #I don't like the default legend so I typically make mine like below, e.g.\n", " #with smaller fonts and a bit transparent so I do not cover up data, and make\n", " #it moveable by the viewer in case upper-right is a bad place for it\n", " leg = plt.legend(['Eigenvalues from PCA', 'Kaisers Rule Cutoff'], loc='best', borderpad=0.3,\n", " shadow=False, prop=matplotlib.font_manager.FontProperties(size='small'),\n", " markerscale=0.4)\n", " leg.get_frame().set_alpha(0.4)\n", "\n", " #plt.savefig(os.path.join(save_dir / (name +'.jpg')))\n", " return plt\n", "\n", "def pca_workflow(X, factors=-1, standardize=False, rotation='quartimax'):\n", " \"\"\"\n", " This will perform factor analysis, calculating the number of factors.\n", " Printing scree plots, etc.\n", " \"\"\"\n", "\n", " chi_square_value,p_value=calculate_bartlett_sphericity(X)\n", "\n", " if round(p_value,2)<=0.05:\n", " print(\"Data passed Bartlett’s test for sphericity.\")\n", " else:\n", " print(\"Data failed Bartlett’s test for sphericity, use PCA with caution.\")\n", " \n", " #This is used to calculate\n", " if factors ==-1:\n", " fa = FactorAnalyzer(n_factors=X.shape[1], rotation=None, method='ml')\n", " fa.fit_transform(X)\n", " # Check Eigenvalues\n", " ev, v = fa.get_eigenvalues()\n", " #set the number of factors as where Eigenvalue > 1.0\n", " factors = np.sum(ev>1.0)\n", " print (\"Performing PCA using rotation:\", rotation, \" factors: \", factors, \"and standardization: \", standardize)\n", " loading_cols=['F'+str(x+1) for x in range(factors)]\n", " plot=scree_plot(ev)\n", "\n", " if standardize:\n", " X = StandardScaler().fit_transform(X)\n", "\n", " fa = FactorAnalyzer(n_factors=factors, method='principal', rotation=rotation)\n", " fa.fit(X)\n", "\n", " #Change it back to a dataframe.\n", " results=pd.DataFrame(fa.transform(X),columns=loading_cols)\n", " \n", " return results\n", "\n", "X4= pca_workflow(X)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AgeSibSpParchFarePclass_2Pclass_3Sex_maleEmbarked_QEmbarked_SF1F2F3F4
Age1.000000-0.232625-0.1791910.0915660.006589-0.2810040.084153-0.013855-0.019336-5.866885e-013.811172e-02-3.979659e-024.697929e-01
SibSp-0.2326251.0000000.4148380.159651-0.0559320.092548-0.114631-0.0263540.0687347.266238e-011.159037e-011.523544e-019.665757e-02
Parch-0.1791910.4148381.0000000.216225-0.0007340.015790-0.245489-0.0812280.0608147.530177e-019.012244e-021.703344e-022.089974e-01
Fare0.0915660.1596510.2162251.000000-0.118557-0.413333-0.182333-0.117216-0.1621841.894779e-01-3.740721e-021.871599e-028.756367e-01
Pclass_20.006589-0.055932-0.000734-0.1185571.000000-0.565210-0.064746-0.1273010.1899804.552872e-041.211537e-01-9.175741e-01-1.588046e-01
Pclass_3-0.2810040.0925480.015790-0.413333-0.5652101.0000000.1371430.237449-0.0151041.356613e-01-8.931807e-027.454824e-01-5.398062e-01
Sex_male0.084153-0.114631-0.245489-0.182333-0.0647460.1371431.000000-0.0741150.119224-4.686491e-013.593321e-013.241968e-01-1.889437e-01
Embarked_Q-0.013855-0.026354-0.081228-0.117216-0.1273010.237449-0.0741151.000000-0.499421-3.289038e-02-8.285253e-011.156588e-01-2.081933e-01
Embarked_S-0.0193360.0687340.060814-0.1621840.189980-0.0151040.119224-0.4994211.0000006.820785e-028.340531e-01-1.170429e-01-2.047724e-01
F1-0.5866880.7266240.7530180.1894780.0004550.135661-0.468649-0.0328900.0682081.000000e+00-8.423241e-16-1.197446e-164.285137e-16
F20.0381120.1159040.090122-0.0374070.121154-0.0893180.359332-0.8285250.834053-8.423241e-161.000000e+00-1.106983e-154.455845e-16
F3-0.0397970.1523540.0170330.018716-0.9175740.7454820.3241970.115659-0.117043-1.197446e-16-1.106983e-151.000000e+00-8.211414e-16
F40.4697930.0966580.2089970.875637-0.158805-0.539806-0.188944-0.208193-0.2047724.285137e-164.455845e-16-8.211414e-161.000000e+00
\n", "
" ], "text/plain": [ " Age SibSp Parch Fare Pclass_2 Pclass_3 \\\n", "Age 1.000000 -0.232625 -0.179191 0.091566 0.006589 -0.281004 \n", "SibSp -0.232625 1.000000 0.414838 0.159651 -0.055932 0.092548 \n", "Parch -0.179191 0.414838 1.000000 0.216225 -0.000734 0.015790 \n", "Fare 0.091566 0.159651 0.216225 1.000000 -0.118557 -0.413333 \n", "Pclass_2 0.006589 -0.055932 -0.000734 -0.118557 1.000000 -0.565210 \n", "Pclass_3 -0.281004 0.092548 0.015790 -0.413333 -0.565210 1.000000 \n", "Sex_male 0.084153 -0.114631 -0.245489 -0.182333 -0.064746 0.137143 \n", "Embarked_Q -0.013855 -0.026354 -0.081228 -0.117216 -0.127301 0.237449 \n", "Embarked_S -0.019336 0.068734 0.060814 -0.162184 0.189980 -0.015104 \n", "F1 -0.586688 0.726624 0.753018 0.189478 0.000455 0.135661 \n", "F2 0.038112 0.115904 0.090122 -0.037407 0.121154 -0.089318 \n", "F3 -0.039797 0.152354 0.017033 0.018716 -0.917574 0.745482 \n", "F4 0.469793 0.096658 0.208997 0.875637 -0.158805 -0.539806 \n", "\n", " Sex_male Embarked_Q Embarked_S F1 F2 \\\n", "Age 0.084153 -0.013855 -0.019336 -5.866885e-01 3.811172e-02 \n", "SibSp -0.114631 -0.026354 0.068734 7.266238e-01 1.159037e-01 \n", "Parch -0.245489 -0.081228 0.060814 7.530177e-01 9.012244e-02 \n", "Fare -0.182333 -0.117216 -0.162184 1.894779e-01 -3.740721e-02 \n", "Pclass_2 -0.064746 -0.127301 0.189980 4.552872e-04 1.211537e-01 \n", "Pclass_3 0.137143 0.237449 -0.015104 1.356613e-01 -8.931807e-02 \n", "Sex_male 1.000000 -0.074115 0.119224 -4.686491e-01 3.593321e-01 \n", "Embarked_Q -0.074115 1.000000 -0.499421 -3.289038e-02 -8.285253e-01 \n", "Embarked_S 0.119224 -0.499421 1.000000 6.820785e-02 8.340531e-01 \n", "F1 -0.468649 -0.032890 0.068208 1.000000e+00 -8.423241e-16 \n", "F2 0.359332 -0.828525 0.834053 -8.423241e-16 1.000000e+00 \n", "F3 0.324197 0.115659 -0.117043 -1.197446e-16 -1.106983e-15 \n", "F4 -0.188944 -0.208193 -0.204772 4.285137e-16 4.455845e-16 \n", "\n", " F3 F4 \n", "Age -3.979659e-02 4.697929e-01 \n", "SibSp 1.523544e-01 9.665757e-02 \n", "Parch 1.703344e-02 2.089974e-01 \n", "Fare 1.871599e-02 8.756367e-01 \n", "Pclass_2 -9.175741e-01 -1.588046e-01 \n", "Pclass_3 7.454824e-01 -5.398062e-01 \n", "Sex_male 3.241968e-01 -1.889437e-01 \n", "Embarked_Q 1.156588e-01 -2.081933e-01 \n", "Embarked_S -1.170429e-01 -2.047724e-01 \n", "F1 -1.197446e-16 4.285137e-16 \n", "F2 -1.106983e-15 4.455845e-16 \n", "F3 1.000000e+00 -8.211414e-16 \n", "F4 -8.211414e-16 1.000000e+00 " ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAExCAYAAADVzh2BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA25ElEQVR4nO3dd7xcVbn/8c/3nBBa6EIMRYISeglFwHKRcuEigoAiRURUigixoFwFUYhiuyqiFIVQJPpDUAQEFanSUXoghBoiSCA0FUioKc/vj70m2ZnMOWfKnjPlfN++5pWZXZ5Zk8g8s9Zeez2KCMzMzFqhp9UNMDOzoctJyMzMWsZJyMzMWsZJyMzMWsZJyMzMWsZJyMzMWsZJyMxsCJF0rqTnJT3Qx35JOkXSVEn3S9o8t28XSY+kfccU0R4nITOzoeU8YJd+9n8QGJMehwG/AJDUC5ye9m8A7C9pg0Yb4yRkZjaERMRNwL/7OWQP4FeR+TuwvKRRwFbA1IiYFhFvARemYxsyrNEAQ9HhWrbQZSZOP2NckeEyr79WeMi5900pNF7P8iMKjQegzbYoNN7cG28qNB5AzwrLFh6TnmJ/T/YceESh8QDmnfnjYgOOKP7/Pw9deHvhMTd+4h9qNEYt3zlnMvOzZD2YkgkRMaGGt1sNeCr3enraVmn71jXErchJyMysi6SEU0vSKVcpaUY/2xviJGRm1uYG+brJdGCN3OvVgWeA4X1sb4ivCZmZtblhUtWPAlwOfDLNktsGeDkiZgB3AmMkrSVpOLBfOrYh7gmZmbW5nkJyS0bSBcB2wNskTQdOABYDiIgzgCuAXYGpwGvAp9O+OZLGAVcBvcC5EdHwhWInITOzNlfkkFVE7D/A/gCO7GPfFWRJqjBdORwnaS9JIWm9VrfFzKxRPVLVj07TlUkI2B+4hWzM0syso/XU8Og0ndjmfkkaAbwPOJiUhCT1SPq5pCmS/iTpCkl7p31bSLpR0t2Srko3ZZmZtY0eVf/oNF2XhIA9gSsj4lHg32ndo48Ao4GNgUOA9wBIWgw4Fdg7IrYAzgW+WymopMMk3SXprgd5q+kfwsyspFeq+tFpunFiwv7AT9PzC9PrxYCLImIe8Kyk69P+dYGNgGuU/eP1AjMqBc3fAFb0iglmZv3pxt5CSVclIUkrATsAG0kKsqQSwKV9nQJMiYj3DFITzcxq1onDbNXqtgS7N9nCe2tGxOiIWAP4B/Ai8NF0bWgk2Rx5gEeAlSXNH56TtGErGm5m1pdunpjQVT0hsqG3H5RtuxhYn2wpigeAR4Hbye4CfitNUDhF0nJkfx8/BYpdqdPMrAGdOPW6Wl2VhCJiuwrbToFs1lxEzEpDdncAk9P+ScC2g9hMM7OaDOveHNRdSWgAf5K0PNkifCdGxLMtbo+ZWVU6cZitWkMmCVXqJZmZdYKeilUUusOQSUJFKroI3ZGHn1ZoPICj1xtZeMxVNyw25vBVVyk0HsDc628sNF7v2qMLjQcQr7xSfMz/vFxovIu33bfQeAC771bsnJ94vtjPDLDOdu8qPGYRunl2nJOQmVmb83CcmZm1jHtCZmbWMgUVq2tLTkJmZm2um4fjOu6zSTourYZ9v6RJkraWdLakDdL+WX2ct42k29M5D0kaP6gNNzOrUzevot1RPaG0vM5uwOYR8aaktwHDI+KQKk6fCOwTEfdJ6iVbvNTMrO118xTtTusJjQJejIg3ASLixYh4RtINkrYsHSTpJEn3SLpO0spp8yqkFbIjYm5EPJiOHS/p15L+KukxSYcO8mcyM+tXN/eEOi0JXQ2sIenRVKTuAxWOWRq4JyI2B24ETkjbTwYekXSppM9KWiJ3zibAh8jqDB0vadXyoPl6QmfdfG+hH8rMrD+9qv7RaToqCUXELGAL4DDgBeC3kj5Vdtg84Lfp+f8D3p/O/TawJVki+zhwZe6cyyLi9Yh4Ebge2KrCe0+IiC0jYstD/2uz4j6UmdkAelDVj4FI2kXSI5KmSjqmwv7/TdfOJ0l6QNJcSSumfU9Impz23VXEZ+uoa0KQDaUBNwA3SJoMHDTQKblzHwd+Ieks4IW0mOlCx/Tx2sysZYoaZkvXw08HdiKrLHCnpMtLlycAIuJHwI/S8bsDR0XEv3Nhtk8/2AvRUT0hSetKGpPbNBZ4suywHrK6QpD1eG5J535Imj/ZfgwwF3gpvd5D0hIpKW0H3Fl4483M6lRgPaGtgKkRMS0i3iKrPr1HP8fvD1zQQNMH1Gk9oRHAqWk17DnAVLKhud/njnkV2FDS3cDLQGkRrAOBkyW9ls49ICLmprx0B/Bn4B1kK2w/MwifxcysKrV0hCQdRva9WDIhIiak56sBT+X2TQe27iPOUsAuQH6xzACuTpWrz8zFrVtHJaGIuBt4b4Vd2+WOGZGefrPs3P36Cf1oRBzWz34zs5appahdSgx9JYdKgfq6/LA7cGvZUNz70ozkVYBrJD0cETdV3bgKOmo4zsxsKCpwOG46sEbu9epAXyM/+1E2FFcaJYqI54FLqTCJq1Yd1RNqhogY3+o2mJn1p8CZ13cCYyStBTxNlmg+vsj7ScsBHwA+kdu2NNATETPT852BbzfaoCGfhOry+muFhmtG7Z8fP/xc4TF/tObyxQZ8/fVi4wE9yy5VbMCRby82HqDZswuPGS8VW6NodhQ/QbRnWG+x8VZcptB4AG88NqPwmIsXEEMFLWAaEXMkjQOuAnqBcyNiiqTD0/4z0qF7AVdHxKu500cCl6a2DAN+ExH5W13q4iRkZtbmirwHNSKuAK4o23ZG2evzgPPKtk0DNi2wKYCTkJlZ2+vmi/dOQmZmba6Lywk5CZmZtbtuXkXbScjMrM11bwrqwKHGtJheaWG9i9JdvY3EGy3pgaLaZ2ZWNJdyaC+vR8TYiNgIeAs4vJqTJLnXZ2YdSTX8r9N0YhLKuxlYW9LuqXT3vZKulTQS5hesmyDpauBXkkamekL3pUdpCaBeSWelsuFXS1qyZZ/IzKyManh0mo5NQqln80FgMtlK2dtExGZkq8J+NXfoFsAeEfFx4BTgxojYFNgcmJKOGQOcHhEbkq2s/dEK77egqN1tk5v0qczMFtXNw3GdOES1pKRJ6fnNwDnAumQF7kYBw4F/5I6/PCJKt+bvAHwS5tclelnSCsA/IqIU825gdPmb5hcFnPvTL7nekJkNGs+Oay+vR8TY/AZJpwI/iYjLJW0HjM/tzi870Zc3c8/nAh6OM7O20b0pqIOH48osR7YYH/RfafU64HOQVRiUtGyzG2Zm1iip+ken6ZYkNB64SNLNQH9lZ78IbJ/Kgt8NbDgIbTMza0g3T0zouOG4XNG6/LbLgMsqbB9f9vo5Kpey3Sh3zI8bb6WZWXE6cep1tTouCZmZDTW93ZuDnITMzNpdF+cgJ6F6zL1vysAH1WDVDYsvald4ATrgf696pNB4p2+7WaHxANh862LjPdyEe8KGDy88ZM+6YwqNt8e2LxUaD6Bn5ErFBmxCUcRTr59aeMxjC4jh4TgzM2uZTpz1Vi0nITOzNtct05grcRIyM2tzXdwR6uoEa2bWFXqkqh8DkbSLpEckTZV0TIX920l6OZXMmSTp+GrPrYd7QmZmba6onpCkXuB0YCdgOnCnpMsj4sGyQ2+OiN3qPLcmXdMTyhW7Kz1Gt7pNZmZFkFT1YwBbAVMjYlpEvEVWdaDSDfxFn9unbuoJLbKw6UCU/YspIuY1p0lmZo2rpUSDpMOAw3KbJqQqAACrAU/l9k0HKt3X8B5J9wHPAEdHxJQazq1JNyWhhUgaQbaUzwrAYsA3IuKy1EP6C3A98B5gT0n7APsAiwOXRsQJrWm1mdmiVEMWypedqRSq0illr+8B1oyIWZJ2Bf5AVnOtmnNr1jXDcaQ6Q+lxKfAGsFdEbA5sD5ykBX3VdYFfpSJ465L9BW8FjAW2kLRtefB8UbuzH5k+GJ/HzAyAnp7qHwOYDqyRe706WW9nvoh4JSJmpedXAItJels159ajm3pCCw3HSVoM+F5KKPPIupKlpQmejIi/p+c7p8e96fUIsqR0Uz54/tfFW5/eyUXtzGzQVHGtp1p3AmMkrUVW/mY/4ONl7/V24LmICElbkXVW/kVWdbrfc+vRTUmo3AHAysAWETFb0hPAEmlfvtCdgO9HxJmD3D4zs6oUlYMiYo6kccBVQC9wbkRMkXR42n8GsDfwOUlzgNeB/SIigIrnNtqmbk5CywHPpwS0PbBmH8ddBZwo6fw0BroaMDsinh+0lpqZ9aPAnlBpiO2Ksm1n5J6fBpxW7bmN6uYkdD7wR0l3AZOAhysdFBFXS1of+Fv6h54FfAJwEjKztuC14zpAebG7iHiRbPZbJRuVHfsz4GdNapqZWUOqWQmhU3VNEjIz61Y9tdwo1GGchMzM2py66WaaMk5CdehZfsTAB9Vg+KqrFBoPaErBr6KL0B153IWFxgP4+T37FBpv3q03FBoPQEstVXjMN264s9B4i689qtB4AHOmP1dovCUm/KHQeABfXeO4wmMWociJCe3GScjMrM11cQ5yEjIza3fuCZmZWct0cQ5yEjIza3e9nh1nZmat0s3DcS2Z+JcrQPeApIsk9TldSNJ4SUc3sS1rSLpe0kOSpkj6YrPey8ysHlL1j07Tqtnnr0fE2IjYCHgLOLxF7QCYA3wlItYHtgGOlLRBC9tjZrYQJ6HmuhlYG0DSJyXdL+k+Sb8uP1DSoZLuTPsvLvWgJH0s9aruk3RT2rahpDtSj+t+SWMqvXlEzIiIe9LzmcBDZGUfzMzagnpU9aPTtDQJSRoGfBCYLGlD4Dhgh4jYFKg0LHZJRLw77X8IODhtPx74n7T9w2nb4cDPUo2hLckKMg3UntHAZsDtFfbNL2p31uQnqv+QZmYN6u1R1Y9O06oktKSkScBdwD+Bc4AdgN+nhUeJiH9XOG8jSTdLmkxWL2jDtP1W4DxJh5LVuQD4G/B1SV8jK1Xb7xICqRz4xcCXIuKV8v0RMSEitoyILQ/deHRtn9bMrAHdPBzXqtlxC1VBBUiltweqWHoesGdE3CfpU8B2ABFxuKStgQ8BkySNjYjfSLo9bbtK0iER8ddKQVMV1ouB8yPikvo/lplZ8Tw7bnBcB+wjaSUASStWOGYZYEZKGgeUNkp6V0TcHhHHAy8Ca0h6JzAtIk4BLgc2qfSmKfmdAzwUET8p9BOZmRXAPaFBkErMfhe4UdJc4F7gU2WHfZPses2TwGSypATwozTxQGTJ7D7gGOATkmYDzwLf7uOt3wccSHZdalLa9vVUQdDMrOW6uSfUkiRUXoAut30iMLFs2/jc818Av6hw3kcqhPt+egzUllvIkpeZWVvq4hzUVsNxZmZWQU+vqn4MRNIukh6RNFXSMRX2H5Bua7lf0m2SNs3te0LS5HTry11FfLa2GY5rtnSt6boKu3aMiH/VFGuzLYppVM7c628sNF7PssXXrGHzrQsNd/pftkYj1yw05hGbV+oUN+bk/YqtozT7hZmFxgNYauw7C485++kXCo03fL1i2zj3R1/idyf/udCY+147ceCDWqCo4ThJvcDpwE5kt63cKenyiHgwd9g/gA9ExH8kfRCYAOT/49++NIu5CEMmCaVEM7bV7aik6ATUKYpOQM1QdALqFEUnoGYoOgG1teLu/9kKmBoR0wAkXQjsAcxPQhFxW+74vwOrF/XmlXg4zsys3dUwPS5/Y316HJaLtBrwVO71dPpfIeZg4C+51wFcLenusrh1GzI9ITOzTlXLcFxETCAbQqsYqtIpfbzn9mRJ6P25ze+LiGckrQJcI+nhiLip6sZV4J6QmVm76+2p/tG/6cAauderA8+UHyRpE+BsYI/8NfOIeCb9+TxwKdnwXkOchMzM2lyBC5jeCYyRtJak4cB+ZDfzL3gv6R3AJcCBEfFobvvSkpYpPQd2Bh5o9LN5OM7MrN0VNDsuIuZIGgdcRbbO5rlpoYDD0/4zyBaEXgn4eRoGnBMRWwIjgUvTtmHAbyLiykbb1JIklFZEmJze/yHgoIh4rY9jxwOzIuLHTWrLEsBNwOKpPb+PiBOa8V5mZvUoskRDWg3mirJtZ+SeHwIcUuG8acCm5dsb5aJ28CYLykeMBXaRtE0L22NmtrAuXjyuHa4JtbqoXUTErPRysfRYZLbIQvWErr+zmE9uZlaNHlX/6DAtvSaUK2p3Za6o3fsi4sU+VtG+JCLOSud+h2z64KksKGr3tKTl07GlonbnpwtwvRXildrRC9xNlgxPj4hFitrlpz3O/dV3Bio5YWZWGA08661juahd9l5zU32j1YGtJG3U6Ac0MyuMh+MKV7omNDYiPh8Rb5HdRFVNUbtxEbEx8C1gCciK2gHfIJv/PknSShHxG7JS36+TFbXbYaBGRcRLwA3ALnV9KjOzJlBP9Y9O005NblVRu5VLQ3iSlgT+G3i4uI9lZtagLu4Jtc19Qi0sajcKmJiuC/UAv4uIPxX2wczMGlTkFO1246J2EfcDQ3OpZDPrDB3Yw6lW2/SEzMyssm6eHTdkklCRRe3m3tjQorGL6F17dKHxABj59uJjPjy50HDzbr2h0HhQfP2foy68t9B4AKd9c8/CY86Z9tTAB9Vg+OeOKDQewIwvFLsQyY7rvK3QeABx69WFx2TLDzYew8Nxna+di9qZmfXLw3FmZtYqRZX3bkdOQmZm7c7DcWZm1iqemGBmZq3j4TgzM2uVbr5Ztel9PEnHSZqSyilMkrR1s9+zijaNltRwWVozs0HhZXvqI+k9wG7A5hHxpqS3AcOb+Z5mZl3HPaG6jQJejIg3ASLixYh4RtIWkm6UdLekqySNkrScpEckrQsg6YJUmqEiSbMk/V+Kca2krSTdIGmapA+nY0an0g/3pMd7K8TplfSjVCzvfkmf7eP95he1O/vh6YX85ZiZVUNS1Y9O0+wkdDXZitaPSvq5pA+kFbBPBfaOiC2Ac4HvRsTLwDiyukD7ASuUCtj1YWnghhRjJvAdYCdgLxYsVvo8sFNEbA7sC5xSIc7BwMsR8W7g3cChktYqPygiJkTElhGx5SHrrV7zX4SZWd16e6p/dJimtjiVzd4COAx4Afgt8FlgI+CaVNjuG2TF5IiIa8hWxz4dOGSA8G8BV6bnk4EbI2J2ej46bV8MOCsVwbsI2KBCnJ2BT6a23A6sBFQsBW5m1hIFXhOStEsadZoq6ZgK+yXplLT/fkmbV3tuPZo+Oy4i5pIVirshJYMjgSkR8Z7yYyX1AOuTFaJbEehv3Gt2RJSK4M0DSkN+81LZcICjgOeATckS7hsV4gj4fERcVeNHMzMbHAUNs6WSNaeTjRpNB+6UdHlEPJg77INkP8THAFuTVS7Yuspza9bUnpCkdVOdn5KxwEPAymnSApIWk1Qq031U2r8/cG4aumvEcsCMiJgHHMiC0t95VwGfK72XpHUkLd3g+5qZFaenp/pH/7YCpkbEtFTR+kJgj7Jj9gB+FZm/A8tLGlXluTVrdk9oBHBqqlw6B5hKNjQ3AThF0nKpDT9NxecOAbaKiJmSbiIbqmtk6d2fAxdL+hhwPfBqhWPOJhu+u0fZVb0XgD0beE8zs2LV0BOSdBjZ92zJhIiYkJ6vBuSXXJ9O1tvJq3TMalWeW7OmJqGIuBtYZEYaWQnubStsXz937pcHiD0i93x8pX0R8RgLl/U+Nm1/guy6FKmX9PX0MDNrPzUkoZRwJvSxu1KgqPKYas6tmVdMMDNrd72VriTUZTqwRu716sAzVR4zvIpza9b2SUjS7cDiZZsPjIhiK6zVoGeFZQuNF6+8Umg8AM2eXXhMhhd7n7GWWqrQeACzX5hZaLxmFKAbd+IfCo/581snFhpv3mUXFhoPYPXrry803htfOKDQeAAMa9OvxOLu/7kTGJNuQ3ka2A/4eNkxlwPjJF1INtz2ckTMkPRCFefWrE3/xheIiJYv82Nm1lIFJaGImCNpHNmErF7g3IiYIunwtP8M4ApgV7Jr+K8Bn+7v3Ebb1PZJyMxsyCtwJYSIuIIs0eS3nZF7HmS30lR1bqOchMzM2t3AU687lpOQmVm7cxIyM7OW6cCFSavlJGRm1ubUxT2hAT+ZpLmpGF3pUfWidZK2k/SnRhqYyjNsWee550nau5/9wyX9VNLjaUG+P0l6R/2tNTNrgiFe1O71iBjb7IZUkhbMa6bvAcsA60TEXEmfBi6TtEVaScHMrPU6MLlUq+4+nqQnJH1P0t9SsbfNU4G6x0tzzpNlJV0q6UFJZ6SVspH0i3TeFEnfKot7vKRbgI/ltvdImijpO30VoktLkJ+W3uvPwCr9tH8psvnvR6WVvomIXwKzgP+ucPz8onZn3T+t3r82M7PadXFPqJoktGTZcNy+uX1PpZIMNwPnAXsD27CgqBxkK69+BdgYeBfwkbT9uIjYkmxttw9Iyq/x9kZEvD8iSrdtDwPOBx6NiG/QdyG6vYB103sdSuV160rWBv4ZEeXLFdxFhbpD+aJ2h27yzn7CmpkVrLe3+keHaXQ47vL052RgRETMBGZKeiOtnA1wR0RMg6xkN/B+4PfAPmm112FkZcA3AO5P5/y27H3OBH4XEd9Nr3cGNsld71mOrPbFtsAFqWfzjKS/9vO5ROXF9zrvp4SZdbcO7OFUq9EpF2+mP+flnpdelxJc+Rd9pF7L0cCOEbEJ8Gdgidwx5SUXbgO2l1Q6plSIbmx6rBURV/fxfn2ZCqwpaZmy7ZuT9YbMzNrDEB+Oa9RWktZK14L2BW4BliVLNC9LGklWya8/55AtFXFRqpraVyG6m4D90jWjUcD2fQWMiFeBicBPShMgJH2SrPrqrfV/XDOzghVX1K7tVDMct6SkSbnXV0ZELbXF/wb8gOw6zU3ApakE973AFGAaVXzpR8RPUhG8XwMHULkQ3aXADmTDg48CNw4Q9ljgR8AjkpZMcd6TKxtuZtZ6HdjDqdaASSgiKl7piojRuefnkU1MKN93Q3pUOv9TA8VNr7fLPc9XWe2rEN24SnH7eK83gS8AX5D0duBKsjLgfRWEMjMbfEM5CQ0VEfEsMLbV7TAzW0QHznqr1pBIQpIuBdYq2/y1iLiqroAFj7vGf14uNB5AvFR8obyedccUGu+NG+4sNB7AUmOLnT4/Z9pThcaD4gvQARzxvoMKjXfqof3d3VBnzNU3LjTeEcd9ZOCDatWuI/HuCXW2iNir1W0wM6ubk5CZmbVMB856q5aTkJlZu3NPyMzMWqaneycmdG8fz8ysW/So+kcDJK0o6RpJj6U/V6hwzBqSrpf0UFqA+ou5feMlPZ1ba3TXAT9aDY3r5rpCu0m6V9J9aQXuz9bfUjOzgqmn+kdjjgGui4gxwHXpdbk5wFciYn2yBauPlJRf9Pnk3JJqVwz0hrUMx3VlXaG09M8EYKuImC5pcbLVGMzM2sPgXRPaA9guPZ9IttjA1/IHRMQMYEZ6PlPSQ8BqwIP1vGHDabPT6wqRFbUbBvwLslUUIuKRRv9ezMwKU8PacfnaZ+lxWA3vNDIlmVKy6e+7E0mjgc2A23Obx6Xv43MrDect8tFqaFxX1hWKiH+TlaR4UtIFkg4oJci8/D/sWfe5qJ2ZDaIaVtHO1z5LjwkLh9K1kh6o8NijtiZpBHAx8KVcXbZfkH2/jyXrLZ00UJyihuM6ua4QEXGIpI3JKqoeDewEfKrsmAmkNeXmfHWfNr2t2sy6UoGz4yJikcrRJZKekzQqImakSgTP93HcYmQJ6PyIuCQX+7ncMWcBA84FKGp2XCfXFcoOjpgcESeTJaCP1nKumVlTDV4ph8uB0hpQBwGXlR+QKhecAzwUET8p2zcq93Iv4IGB3nAwp2i3ZV0hSSMkbZfbNBZ4so7PZ2bWHINX1O4HwE6SHiP7Qf6D7O21qqTSTLf3kVUb2KHCVOwfSpos6X6y792jBnrDWobjurWukICvSjoTeJ0sKX6qhs9lZtZcjU+9rkpE/AvYscL2Z4Bd0/NbyL43K51/YK3vWXUS6ta6Qun61YA3VJmZtUyDN6G2My/bY2bW7rp42Z4hlYRUUF2hngOPKK5RwMXb7jvwQTWa3YS6KHts+1Kh8RZfe9TAB9Vo9tMvFBpv+OeK/bcGmHfZhQMfVKOi6/98/qzbCo0HcNpRfU7Kqku8+GKh8QBoRswiDNJwXCsMqSTkukJm1pE8HGdmZi3jUg5mZtYyHo4zM7OW8XCcmZm1TBfPjuvePl4FWrQm0mhJKykr0DRL0mmtbqOZ2SIGr57QoBtqPaFFFmFNy/x8E9goPczM2ouH47pXRLwK3CJp7Va3xcysog7s4VSrez9ZZfmaSJfWcmK+ntCE3/+xWe0zM1vU4C1gOuiGWk+o7hLl+XpC8ybf4HpCZjZ4Gi/R0LaGWhIyM+s8XTw7zknIzKzddeAwW7WchABJT5AV2BsuaU9g54h4sKWNMjMr8XBcd4iIEX1sHz3ITTEzq557QmZm1jJdPEXbScjMrN15YoLlzTvzx4XG2323DQuNB9AzrPj/0/aMXKnQeHOmP1doPIDh672z0HgzvnDCwAfVaPXrry885qmrb1xovKIL0AGMO/naQuM1o41ta5BWTJC0IvBbYDTwBLBPRPynwnFPADOBucCciNiylvPzurePZ2bWLQZv7bhjgOsiYgxwXXrdl+0jYmwpAdVxPuAkZGbW/gZvxYQ9gInp+URgz2af7yRkZtbuaugJ5ZcYS4/DaninkRExAyD9uUofxwVwtaS7y+JXe/58viZkZtbmVEMPJ7/EWB+xrgXeXmHXcTU06X0R8YykVYBrJD0cETfVcP58TkJmZu2up7iv6ojoc0aHpOckjYqIGZJGAc/3EeOZ9OfzaTHorYCbgKrOzxtSw3F9FLXbKXUpJ6c/d2h1O83MFtKj6h+NuRw4KD0/CLis/ABJS0tapvQc2Bl4oNrzyw21nlClonYrALunruVGwFXAaq1onJlZRYN3s+oPgN9JOhj4J/AxAEmrAmdHxK7ASODSNEQ4DPhNRFzZ3/n9GWpJaBERcW/u5RRgCUmLR8SbrWqTmdlCBmnZnoj4F7Bjhe3PALum59OATWs5vz9DajiOgYvafRS4t1ICys84OWvKP5vfUjOzksG7T2jQDbWeUJ9F7SRtCPwf2fjmIvIzTuaM281F7cxs8HgB0+4maXXgUuCTEfF4q9tjZraQXq8d17UkLQ/8GTg2Im5tcXPMzBbVgcNs1ereT1a9ccDawDdz14sGvMvXzGzQDN6yPYNuSPWEKhW1i4jvAN9pQXPMzKrTxT2hIZWEzMw6Ugf2cKrlJGRm1u56u/erWhGebVyrOcfsV+hf2uxpTxcZDoDFRq1YeMyiDfv+rwqPecGqYwqNt+M6bys0HsCy61ZaO7Ixi62/dqHx4sUXC43XDEUXyYPmFMob9pNLGu7GxCN/r/o7R+tu01Hdpu5Nr2Zm3cLXhMzMrGV8TcjMzFrGPSEzM2sZ94TMzKxlvGxPd5A0F5ic27QnWQ30UilcAeMjotIK22ZmreHhuK5Rqajd88CWETEnlaO9T9IfI2JOS1poZlbOw3HdKyJey71cAvCNU2bWZro3CXVvH6+yikXtJG0taQrZUN3hlXpBCxW1m+RqD2Y2iLyAadeoWNQuIm4HNpS0PjBR0l8i4o2yYxYUtSt4xQQzs351YHKp1lDrCfUrIh4CXgU2anVbzMzm6+Ly3p3X4oJJWkvSsPR8TWBd4ImWNsrMLE81PBp5G2lFSddIeiz9uUKFY9bNXdaYJOkVSV9K+8ZLejq3b9eB3nPIJyHg/WQz4iaRlfg+IiLaf/VGMxtCBikLwTHAdRExBrguvV5IRDwSEWPTpY0tgNfIvjtLTi7tj4grBnrDIXVNqI+idr8Gft2C5piZVWfwrgntAWyXnk8EbgC+1s/xOwKPR8ST9b6he0JmZu2uhtlx+Zm86XFYDe80MiJmAKQ/Vxng+P2AC8q2jZN0v6RzKw3nlRtSPSEzs45Uw4SD/EzeiqGka4FKRa2Oq6lJ0nDgw8Cxuc2/AE4ku9/yROAk4DP9xnFRu9pNHr1WoX9p62z3riLDATD7+VcKj3nq9VMLjffVEz9eaDwAbfehQuPFrVcXGg+AYU347Vfwf8cxbVqh8TpFMwrlnRGvNF7U7rl/VF/UbuRadb+fpEeA7SJiRlpB5oaIWLePY/cAjoyInfvYPxr4U0T0O9vYw3FmZu1u8G5WvRw4KD0/CLisn2P3p2woLiWukr2ABwZ6QychM7N2N3hJ6AfATpIeA3ZKr5G0qqT5M90kLZX2X1J2/g8lTZZ0P7A9cNRAb+hrQmZmbW9wZsdFxL/IZryVb38G2DX3+jVgpQrHHVjrezoJmZm1OXnZnu4gaW7Znb6jc/veIWmWpKNb2EQzs0V18bI9Q60nVHEB0+Rk4C+D2BYzs+p0cU9oqCWhiiTtCUwjW7zUzKy9dHES6ry+W2MWqSckaWmyZSm+1d+J+buQfz9z5mC01cwsGbS14wbdUOsJVRqO+xbZgnuz+rv4l78LueibVc3M+tXFPaGhloQq2RrYW9IPgeWBeZLeiIjTWtssM7Oke3OQk1BE/FfpuaTxwCwnIDNrKx04661aQz4JmZm1PQ/HdYdK9YTK9o8fpKaYmdXAScjMzFrFPSEzM2sZJyEzM2uZLp6YQET40cQHcFg7xxuqbRyqn7sT2jiUP/dQfHRxem0btdR3b0W8ZsTshDY2I6bb2L4xO6GNQ5KTkJmZtYyTkJmZtYyTUPNNaPN4zYjZCW1sRky3sX1jdkIbhySlC2xmZmaDzj0hMzNrGSchMzNrGSchMzNrGSchMzNrGSehgkkaKekcSX9JrzeQdHABcd8u6cOSdpf09gLiLS7p45K+Lun40qPBmO+X9On0fGVJazUQaz1JO0oaUbZ9lwZibiXp3en5BpK+LGnXeuPl4q4p6b/T8yUlLdNgvP+W9IX0eG+DsQ6VNCY9l6RfSnpF0v2SNm8kdoX3Wq/B8xersO1tdcbqkbK1biQNl7S5pBUbaV+F9ziiyHhDlZNQ8c4DrgJWTa8fBb7USEBJhwB3AB8B9gb+LukzjcQELgP2AOYAr+Ye9bbxBOBrwLFp02LA/6sz1hdS+z4PPCBpj9zu7zXQvlOAX0j6PnAaMAI4RtJx9cRMcQ8Ffg+cmTatDvyhzlhrSLoH+CYwGlgL+L6kK9OPhkPqCPtF4In0fH9gkxT3y8DP6mlnP66u5yRJ20uaDjwj6WpJoxuJKWlPYAbwdPr/zs3Aj4H7Je1eZxu/XPb4CvDt0ut6YlrGC5gW720R8TtJxwJExBxJcxuM+b/AZhHxLwBJKwG3Aec2EHP1iKi7V1HBXsBmwD0AEfFMAz2CQ4EtImJW+kL6vaTREfEz6i+ssjcwFlgceJbs878i6UfA7cB364x7JLBVikFEPCZplTpjnQ6cEhHn5TdK+iTwt/Ty7BpjzomI2en5bsCv0v+Prk0l7Wsi6ZS+dgHL1xov+SHwPxExRdLewDWSDoyIv1Pfv/cJwKbAksB9wLsj4hFJawIXA3+sI+a3gCuAKbk29QIN9XrNSagZXk1JIgAkbQO83GDM6cDM3OuZwFMNxrxN0sYRMbnBOCVvRURIKn3upRuI1RsRswAi4glJ25ElojWpPwnNiYi5wGuSHo+IV1L81yXNa6Ctb0bEW0pL7UsaRvq3r8N65QkIICJ+Jel7QD3DZ/MkjQL+A+zIwsl2yTrifRr4CvBmhX371xEPYHhETAGIiN9Legi4RNIx1Pl3GRHPAkj6Z0Q8krY9WRqiq8OGwE+ApYFvRcRrkg6KiG/VGc8SJ6HifRm4HHiXpFuBlcl+hTfiaeB2SZeR/Ue5B3BHaRggIn5SbSBJk1OMYcCnJU0j+0JRFio2qbONv5N0JrB8GqL6DHBWnbGelTQ2IiaRNWqWpN3Ien4b1xnzLUlLRcRrwBaljZKWAxpJQjdK+jqwpKSdgCOo75c29DE8nr44X4+I5+uIeTxwF9mv9stLX/aSPgBMqyPencADEXFbhXaOryMewGxJby8ljtQj2hH4E/CuegJK6omIeWT/Pyxt6wWG1xMvIv4J7J2G966RdHI9cWxRXjGhCdKv4XXJvtgfyQ2H1BvvhP721/JrLPUm+ov1ZLWxcjFFdi1kPWBnss99VURcU2usFG91sp7LsxX2vS8ibk3PV4iI/1QZc/GIWOTXe7rwParUI6wlZjq+BziY3OcGzo46/sNKX2wjgC9FxKtp29LAyWRJ6Iu1xkwxhgHL5D9XiqtSj1PSTtX8e6WL+2+kZF4IZZM6XoiI+8q2LweMi4iahkqVTT6ZHBFvlG0fDbw/Iuq6VpmLszQwHtg6IrZtJJY5CRVO0kcqbH6Z7D+Ken7JlsdfAXipni+5sjjbAFMiYmZ6vQywQUTcXme8uyNii4GPLI6keyKi6Blehces4b0XA74PfAp4kqzHuiYwEfh6RLzVxPeu6nNLekfqFRT53oXG7IQ22gKeHVe8g8kuHh+QHmeRDdHdKunAWgIpmza9Xnq+uKS/Ao8Dz6Vfj434BTAr9/rVtK1ef0+/QAdTM2oeVxVT0mRl05wrPup544iYHRFHA2uQJaLPAGtGxNH5BJSG/YpW7d/lH3LtuLig9y46ZtHxmhXT8DWhZpgHrB8Rz0F23xDZl/vWwE3Ar2uItS9wYnp+ENmPhpWBdch+HV/bQDuV701FxLw0bFOv7YHPSnqSLKE1eo2pGs3oxlcbc7cmvHfWgIjXgf4mjPwfUNdQZ39vW+Vx+WT1zoLeu+iYndBGS5yEije6lICS54F1IuLfkmq9NvRWLlH8D3BBmuH1UIMJA2CasvtxSr2fI6jvQnXJBxtsT0ep59pZgZrRA6xW9PG8nWJ2QhstcRIq3s2S/gRclF5/FLgpXcx8qcZYb0raCHiOrKdxdG7fUg2283Cymze/QfYf1XU0UK649KWc7pFZosG2Vatlw3HzD86urZ0KrE8286oXeDUilm1C20qa8SX4RJXHbSrpFbK/pyXTc1jQ863ncxcdsxPaaImTUPGOJFvZ4P3p9R1ks69eJUsktfgi2d34KwMnR8Q/AJQtNXNvvQ1MU1V/EhH71RujQswPAyeRrRTxPNkF9YfI7q+oN+a7gOkR8Wa6V2gTspstX0qH7NgGMU8D9iP70bEl8Elg7Vrb1Sx9TJSZLyIuSX/2e1zu+N4i2tXMmJ3QRlvAExMKlobPHgdmk60isCPZl3E9sW6PiPUiYqWIODG3/YqIqPfGQNKQ3sqS6rpnog8nAtsAj0bEWmSf+9YGY14MzJW0NnAO2XIzvyntjIh/t0PMiJhKdoPt3Ij4JbX/2KjVEzUcu3t6HEz2eUsTZs4GPlF4y8xq5J5QQSStQ/aLeH/gX8BvyS7+N/yFpGwFhhPIelcB3AJ8O9IyPnV6gmzG3uXk1oyr5cbXMrMj4l9KC0dGxPWS/q+B9gHMi2zZo72An0bEqZLq7gE2KeZrKZlPUrYMzgyyu+prVnSvJR1bWlD2T2RT8Gek16PIlgkyayknoeI8TLZQ4u7plzGSjioo9oVkM+s+ml4fQJbkGpmm/Ux69FDM+lcvKVvx+ibgfEnPky2O2ojZkvYnmxlYWnhykZWWWxzzQLLrQOOAo8imV3+03zP6VmrPKsB7gb+m19sDNwCX1N3KbMLMjNzr58hmWZq1lG9WLUj6Zb0f2ZfHlWSJ4+w0NNVo7EVuBJV0V0Rs2WjsRpVu4ksTL14nS2oHAMsB5zfSW5O0AdkEir9FxAXKSkPsGxE/aKeYRUu9lkPLey219IAqxDwNGANcQNab3g+YGhGfL6DJZnVzEipY+jLek2xYbgey+3kujYi6lrlPMX9Mtv7X79KmvYENI6Lf5XwGiLky8FWyiQPzZ7NFxA41xpl/p72kiyOi3l7AQO+zArBGRNR1I2izYipb0+5EsokYwyhgtpSkByJio9zrHuD+/LY64+4FlJaZuSkiLm0knlkRnISaKK2z9TGyX9o1fbmn82eS/WoV2XWGUkmIXmBWg190V5MN6R1N1jM4iGz9rq/VGOfeiNis/HkRJN0AfJjsy30S8AJwY0TUXb+l6JiSppLNhpzc6FJKuZhN6bUoWzdwTERcK2kpsskUMwc6z6yZPDuuiSLi3xFxZj0JKJ2/TEQsm/7siYjF0qOngPsSVoqIc8gmFNwYEZ8hm91WczP7eF6E5SIrufAR4JdpSLLR5YqKjvkU2arShX32iBgHnEFWE2csMKGABFRefG816iy+Z1YkT0xoY5LWi4iH1UcZ5oi4p4HwpdUbZkj6ENkkhdXriNPMm/iGpesh+wB1Vz9tcsyvAldIupFcjZ0GZhmW3APMLPVaJC3TYK+lyOJ7ZoVxEmpvXyZbxeCk3Lb8L+66eljJd5Qtlf8Vsjv+lyWb3VWTJt/E922y0gi3RMSdkt4JPNZmMb9LthDsEtRZq6Zc6rUcBqxIVk9nNbKeUc035+YUWXzPrDC+JtTGJG0F/DMWVIk8iGz67xPA+HpurJS0BNk1oLXJFsk8JyIanUo9ZDVjlqKkSaReS+562+SIqLegH+keppfIVnT4PNlagQ9GRFE9TLO6uCfU3s4gXa+QtC1ZrZnPk64TUF/F1olkQ3E3ky06ugHZ8kBtJyXMg1l0Bt9n+jxp8GNeK2nnRmY/VtCMXssxZJ97MvBZ4IqIqLfyrVlhPDGhvfXmejv7kl2gvjgivkn965NtEBGfiIgzyZLYfxXR0Cb5NfB2shXEbyS7ZtXobK6iYx4JXCnpdUmvSJqZuy5Wrxu1cMnwi6i/ZHjJ+Ig4KyI+FhF7A+dKOr/BmGYNcxJqb725kg07suAOeqi/Fzu/nEQHDMOtnRLuqxExEfgQUPeQVDNi5mYuLpmbyTh/MoakehZwPYZs6ni+19LosNk7JB2b2jScbPWFRq+vmTXMw3Ht7QKyX8Uvkq1GcDNAWnzz5TpjbqqFZ7CVZrS145L0pYT5Uipp8Swwug1j9ufXQK3lwsdHxPFkVXmR1Cvp/Ig4oIF2fJpsOaVjyZYB+ktEnNxAPLNCOAm1sYj4rqTrgFHA1bl7UXrIrg3VE7OTlqSfkFY1+CZwOTACOL4NY/annppH75B0bER8P/VaLqLO0h1l0/t/Rnaf0K1kP242b3Cav1nDPDvOrInyyxrVcI6A88mG4xrqtUi6vp/dUe+N1GZFcRKytiOp3yV06rkRtBkxq3zfqpNQWa9lMRb0Ws6B+m9OTmvPfSwiflvP+WbN5OE4a0dFlJYYjJjVeKuGY08qe/0fsin0J5FN0a53+ad5ko4kWyvQrK24J2TWAEkHpzX4Sq97gW9ExLfqjNeUXoukb5JNbvktCxcxrKc6rVlhPEXb2pakiZKWz71eQdK5bRZzR0lXSBqVZtv9nQZ6XRExj+zeo6J9JsW9Cbg7Pe5qwvuY1cTDcdbONomIl0ovIuI/khotFVFozIj4uKR9ySYRvAbsHxG3NtjGayQdTYG9liiguKJZMzgJWTvrkbRCRPwH5tdnavT/s4XGlDSGbNmji4H1gQNTXaXXGmhjaQmhfI8ogHc2EJPUU9uAhZcr+lUjMc0a5SRk7ewk4G+SLiL7Et6HbNXqdor5R2BcKrkgspXP7yRbm64uzei1SDoB2I4sCV1Btm7gLYCTkLWUJyZYW5O0AdmsMAHXRcSD7RRT0rKpSF5+25iIaGhJnKJ7LZImkxXJuzciNpU0Ejg7InZvpJ1mjXJPyNpOhXITZzS6zl0zYiZLSjoZWC0idkkJ7j00sC5bk3otr6ep2nMkLQs8T4PDe2ZF8Ow4a0cTgS3JksUHgR+3aUyA88iK5I1Krx8FvtRgzL3JFqx9NiI+TdaDWbzBmHelWYFnkc2Muwe4o8GYZg3zcJy1nXwBt7SK+B21Ln0zGDFTrDsj4t1pMkKpAN2kiBjbQMw7ImIrSXeTLdszE3ggIuq+zlQWfzSwbETcX0Q8s0Z4OM7a0ULlJkrF3dowJsCrklYiFZ2TtA31r3BeUt5rmUUBvRZJHwHeT9bWWwAnIWs594Ss7Uiay4L7YwQsSXYPTt3lJpoRM8XdHDgV2Ah4AFgZ2LuoXkZRvRZJPye7HnZB2rQv8HhENOPGWLOqOQmZ1UHSu4GnIuLZNLz3WeCjwIPA8Y0uh1Pea4mISxuMNwXYqFQOJC0PNLmoIT6zenligll9zmTB4qTvBY4DTidbdHRCI4FTr+VwskkUDwCflXR6IzGBR4B35F6vgYfjrA34mpBZfXpzvZ19gQkRcTFwsaRJDcb+AAv3WiaSJaSaSfojWW9qOeAhSXek11sDtzXYTrOGOQmZ1adX0rB0r9GOwGG5fY3+d1XqtTyZXjfSaylqKrpZUzgJmdXnArIS2S+SlUi4GUDS2tQ5O64ZvZaIuLHsPZbF/91bG/HEBLM6penYo4CrI+LVtG0dYEQ9VVAlfaC//eUJpcbYhwEnkiXMeSyYFehVE6ylnITM2lR5r6WRGXeSHgPeExEvFtE2s6K4W27WZvrqtdDYWm+Pk90XZdZW3BMyazPN6LWkwn2/BG4H3ixtj4gvFPUeZvVwT8is/TSj13Im8Feyqd7zCo5tVjf3hMzaTDN6LZJui4j3FtA8s0K5J2TWfprRa7k+XWv6IwsntoaWFzJrlHtCZm2mGb0WSf+osNlTtK3lnITM2oyk75KtluBei3U9JyGzNlNkr0XSVyPih+n5xyLioty+70XE1xtoqlnDnITMupike0oVZPPPK702awWXcjBrE5K+mnv+sbJ936s3bB/PK702G3ROQmbtY7/c82PL9u1SZ8zo43ml12aDzlO0zdpHM3otm0p6JZ2/ZHpeirdEnTHNCuMkZNY+Cu+1RERv/c0xaz5PTDBrE5LmAq+Sei0sWLpHwBIRsVir2mbWLE5CZmbWMp6YYGZmLeMkZGZmLeMkZGZmLeMkZGZmLfP/Abf+PrC1pakdAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "X4ALL = pd.concat([X,X4], axis =1) \n", "\n", "import seaborn as sb\n", "corr = X4ALL.corr()\n", "sb.heatmap(corr, cmap=\"Reds\")\n", "corr" ] }, { "cell_type": "markdown", "metadata": { "id": "bV5s-bSMJPne" }, "source": [ "### Train Test Split\n", "\n", "Now we are ready to model. We are going to separate our Kaggle given data into a \"Train\" and a \"Validation\" set. \n", "\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "icKFkwZQpvCs" }, "outputs": [], "source": [ "#Import Module\n", "from sklearn.model_selection import train_test_split\n", "train_X, val_X, train_y, val_y = train_test_split(X, y, train_size=0.7, test_size=0.3, random_state=122,stratify=y)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "jGoUxc7brPIg" }, "outputs": [], "source": [ "from sklearn.neural_network import MLPClassifier\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.svm import SVC\n", "from sklearn.gaussian_process import GaussianProcessClassifier\n", "from sklearn.gaussian_process.kernels import RBF\n", "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", "from sklearn.naive_bayes import GaussianNB\n", "from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis\n", "from sklearn import metrics" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "6kHwslmYrcRw", "outputId": "77bc3c4f-c5ec-4240-9faf-1905c8d0d129" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Metrics score train: 0.7929373996789727\n", "Metrics score validation: 0.8134328358208955\n" ] } ], "source": [ "from sklearn import tree\n", "classifier = tree.DecisionTreeClassifier(max_depth=3)\n", "#This fits the model object to the data.\n", "classifier.fit(train_X[['Age','Sex_male']], train_y)\n", "#This creates the prediction. \n", "train_y_pred = classifier.predict(train_X[['Age','Sex_male']])\n", "val_y_pred = classifier.predict(val_X[['Age','Sex_male']])\n", "test['Survived'] = classifier.predict(test_X[['Age','Sex_male']])\n", "print(\"Metrics score train: \", metrics.accuracy_score(train_y, train_y_pred) )\n", "print(\"Metrics score validation: \", metrics.accuracy_score(val_y, val_y_pred) )" ] } ], "metadata": { "colab": { "collapsed_sections": [], "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 1 }