%matplotlib inline

67. Pytorch Tensors#

It’s a Python-based scientific computing package targeted at two sets of audiences:

  • A replacement for NumPy to use the power of GPUs

  • a deep learning research platform that provides maximum flexibility and speed

Tensors are similar to NumPy’s ndarrays, with the addition being that Tensors can also be used on a GPU to accelerate computing.

from __future__ import print_function
import torch

Construct a 5x3 matrix, uninitialized:

x = torch.empty(5, 3)
print(x)
tensor([[-1484854811542562013184.0000,                       0.0000,
         -1484854811542562013184.0000],
        [                      0.0000,                       0.0000,
                               0.0000],
        [                      0.0000,                       0.0000,
                               0.0000],
        [                      0.0000,                       0.0000,
                               0.0000],
        [                      0.0000,                       0.0000,
                               0.0000]])

Construct a randomly initialized matrix:

x = torch.rand(5, 3)
print(x)
tensor([[0.4742, 0.4538, 0.4304],
        [0.1801, 0.4597, 0.2645],
        [0.4020, 0.2434, 0.2058],
        [0.6396, 0.7139, 0.3221],
        [0.1281, 0.3521, 0.9752]])

Construct a matrix filled zeros and of dtype long:

x = torch.zeros(5, 3, dtype=torch.long)
print(x)
tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])

Construct a tensor directly from data:

x = torch.tensor([5.5, 3])
print(x)
tensor([5.5000, 3.0000])

or create a tensor based on an existing tensor. These methods will reuse properties of the input tensor, e.g. dtype, unless new values are provided by user

x = x.new_ones(5, 3, dtype=torch.double)      # new_* methods take in sizes
print(x)

x = torch.randn_like(x, dtype=torch.float)    # override dtype!
print(x)                                      # result has the same size
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
tensor([[-0.5785,  0.6964, -1.4768],
        [-0.0999,  0.1288, -0.7034],
        [-0.0728, -2.1770,  0.4147],
        [ 1.0561, -0.7525,  0.7957],
        [-0.2872, -1.4618, -0.7413]])

Get its size:

print(x.size())
torch.Size([5, 3])

Note

``torch.Size`` is in fact a tuple, so it supports all tuple operations.

Operations ^^^^^^^^^^ There are multiple syntaxes for operations. In the following example, we will take a look at the addition operation.

Addition: syntax 1

y = torch.rand(5, 3)
print(x + y)
tensor([[-0.5261,  1.0870, -0.9739],
        [ 0.5831,  0.5069, -0.5522],
        [ 0.3222, -1.4902,  0.8171],
        [ 1.5093, -0.5091,  1.5999],
        [ 0.5226, -0.8918,  0.0173]])

Addition: syntax 2

print(torch.add(x, y))
tensor([[-0.5261,  1.0870, -0.9739],
        [ 0.5831,  0.5069, -0.5522],
        [ 0.3222, -1.4902,  0.8171],
        [ 1.5093, -0.5091,  1.5999],
        [ 0.5226, -0.8918,  0.0173]])

Addition: providing an output tensor as argument

result = torch.empty(5, 3)
torch.add(x, y, out=result)
print(result)
tensor([[-0.5261,  1.0870, -0.9739],
        [ 0.5831,  0.5069, -0.5522],
        [ 0.3222, -1.4902,  0.8171],
        [ 1.5093, -0.5091,  1.5999],
        [ 0.5226, -0.8918,  0.0173]])

Addition: in-place

# adds x to y
y.add_(x)
print(y)
tensor([[-0.5261,  1.0870, -0.9739],
        [ 0.5831,  0.5069, -0.5522],
        [ 0.3222, -1.4902,  0.8171],
        [ 1.5093, -0.5091,  1.5999],
        [ 0.5226, -0.8918,  0.0173]])

Note

Any operation that mutates a tensor in-place is post-fixed with an ``_``. For example: ``x.copy_(y)``, ``x.t_()``, will change ``x``.

You can use standard NumPy-like indexing with all bells and whistles!

print(x[:, 1])
tensor([ 0.6964,  0.1288, -2.1770, -0.7525, -1.4618])

Resizing: If you want to resize/reshape tensor, you can use torch.view:

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8)  # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size())
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

If you have a one element tensor, use .item() to get the value as a Python number

x = torch.randn(1)
print(x)
print(x.item())
tensor([-1.0914])
-1.0913640260696411

Read later:

100+ Tensor operations, including transposing, indexing, slicing, mathematical operations, linear algebra, random numbers, etc., are described here <http://pytorch.org/docs/torch>_.

67.1. NumPy Bridge#

Converting a Torch Tensor to a NumPy array and vice versa is a breeze.

The Torch Tensor and NumPy array will share their underlying memory locations, and changing one will change the other.

Converting a Torch Tensor to a NumPy Array ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

a = torch.ones(5)
print(a)
tensor([1., 1., 1., 1., 1.])
b = a.numpy()
print(b)
[1. 1. 1. 1. 1.]

See how the numpy array changed in value.

a.add_(1)
print(a)
print(b)
tensor([2., 2., 2., 2., 2.])
[2. 2. 2. 2. 2.]

Converting NumPy Array to Torch Tensor ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ See how changing the np array changed the Torch Tensor automatically

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)
[2. 2. 2. 2. 2.]
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)

All the Tensors on the CPU except a CharTensor support converting to NumPy and back.

67.2. CUDA Tensors#

Tensors can be moved onto any device using the .to method.

# let us run this cell only if CUDA is available
# We will use ``torch.device`` objects to move tensors in and out of GPU
if torch.cuda.is_available():
    device = torch.device("cuda")          # a CUDA device object
    y = torch.ones_like(x, device=device)  # directly create a tensor on GPU
    x = x.to(device)                       # or just use strings ``.to("cuda")``
    z = x + y
    print(z)
    print(z.to("cpu", torch.double))       # ``.to`` can also change dtype together!