Titanic Classification - Keras API
introml.analyticsdojo.com
79. Titanic Classification - Deep Learning Tensorflow#
As an example of how to work with both categorical and numerical data, we will perform survival predicition for the passengers of the HMS Titanic.
import os
import pandas as pd
train = pd.read_csv('https://raw.githubusercontent.com/rpi-techfundamentals/spring2019-materials/master/input/train.csv')
test = pd.read_csv('https://raw.githubusercontent.com/rpi-techfundamentals/spring2019-materials/master/input/test.csv')
print(train.columns, test.columns)
Here is a broad description of the keys and what they mean:
pclass Passenger Class
(1 = 1st; 2 = 2nd; 3 = 3rd)
survival Survival
(0 = No; 1 = Yes)
name Name
sex Sex
age Age
sibsp Number of Siblings/Spouses Aboard
parch Number of Parents/Children Aboard
ticket Ticket Number
fare Passenger Fare
cabin Cabin
embarked Port of Embarkation
(C = Cherbourg; Q = Queenstown; S = Southampton)
boat Lifeboat
body Body Identification Number
home.dest Home/Destination
In general, it looks like name
, sex
, cabin
, embarked
, boat
, body
, and homedest
may be candidates for categorical features, while the rest appear to be numerical features. We can also look at the first couple of rows in the dataset to get a better understanding:
train.head()
79.1. Preprocessing function#
We want to create a preprocessing function that can address transformation of our train and test set.
from sklearn.impute import SimpleImputer
import numpy as np
cat_features = ['Pclass', 'Sex', 'Embarked']
num_features = [ 'Age', 'SibSp', 'Parch', 'Fare' ]
def preprocess(df, num_features, cat_features, dv):
features = cat_features + num_features
if dv in df.columns:
y = df[dv]
else:
y=None
#Address missing variables
print("Total missing values before processing:", df[features].isna().sum().sum() )
imp_mode = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
df[cat_features]=imp_mode.fit_transform(df[cat_features] )
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
df[num_features]=imp_mean.fit_transform(df[num_features])
print("Total missing values after processing:", df[features].isna().sum().sum() )
X = pd.get_dummies(df[features], columns=cat_features, drop_first=True)
return y,X
y, X = preprocess(train, num_features, cat_features, 'Survived')
test_y, test_X = preprocess(test, num_features, cat_features, 'Survived')
79.2. Train Test Split#
Now we are ready to model. We are going to separate our Kaggle given data into a “Train” and a “Validation” set.
#Import Module
from sklearn.model_selection import train_test_split
train_X, val_X, train_y, val_y = train_test_split(X, y, train_size=0.7, test_size=0.3, random_state=122,stratify=y)
train_X.shape
79.3. Sequential Model Classification.#
This is our training. We do all of the preprocessing our old way and just use the dataframe.values to pass to Keras.
https://keras.io/guides/sequential_model/
from keras.models import Sequential
from keras.layers import Dense
from keras import metrics
#Create our model using sequential mode
model = Sequential()
model.add(Dense(20, input_dim=9, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
#Specify the model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
#Fit the model
model.fit(train_X.values, train_y.values, epochs=100, batch_size=20, verbose=2)
_, trainperf = model.evaluate(train_X, train_y)
_, testperf = model.evaluate(val_X, val_y)
# Alternate Sequential syntax
import tensorflow as tf
altmodel = tf.keras.Sequential([
tf.keras.layers.Dense(20, input_dim=9, activation='relu'),
tf.keras.layers.Dense(100, activation='relu'),
tf.keras.layers.Dense(1)
])
altmodel.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
altmodel.summary()
#Specify the model
#Fit the model
altmodel.fit(train_X.values, train_y.values, epochs=100, batch_size=20, verbose=2)
_, altmodelTrainperf = altmodel.evaluate(train_X, train_y)
_, altmodelValPerf = altmodel.evaluate(val_X, val_y)
79.4. Functional Model#
https://keras.io/guides/functional_api/
inputs = tf.keras.Input(shape=(9,))
x = tf.keras.layers.Dense(20, activation=tf.nn.relu)(inputs)
x = tf.keras.layers.Dense(100, activation=tf.nn.relu)(x)
outputs = tf.keras.layers.Dense(1)(x)
modelalt2 = tf.keras.Model(inputs=inputs, outputs=outputs, name="classifier")
modelalt2.summary()
80. The Keras Model Subclassing Methods.#
https://keras.io/api/models/model/
import tensorflow as tf
class MyModel(tf.keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.dense1 = tf.keras.layers.Dense(20, input_dim=9, activation=tf.nn.relu)
self.dense2 = tf.keras.layers.Dense(100, activation=tf.nn.relu)
self.dense3 = tf.keras.layers.Dense(1)
def call(self, inputs):
x = self.dense1(inputs)
x = self.dense2(x)
return self.dense3(x)
altmodel3 = MyModel()
altmodel3.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
#Fit the model
altmodel3.fit(train_X.values, train_y.values, epochs=100, batch_size=20, verbose=2)
altmodel3.summary()